
Qt Project
 Downloads Documentation Forums Wiki Groups Blogs Qt Digia

Register | Sign in

Not registered?
What are you waiting for?
Register by clicking the link at the
top of the page and start collecting
points. It's fun!

Sharing

Tags what is this?

Ratings what is this?
 4

windows deployment

Qt 5.3

API Lookup
Class index

Function index

QML Types

Qt Modules

C++ Classes by Module

QML APIs by Module

New APIs in Qt 5.3

All Qt references

Getting Started
Getting Started with Qt

What's New in Qt 5

Examples and Tutorials

Qt Licensing

Supported Platforms
Android

BlackBerry

iOS

Linux/X11

Mac OS X

Windows

Windows CE

WinRT

All Supported Platforms

Overviews
All Qt Overviews

Core Internals

Data Storage

Graphics

Mobile APIs

Multimedia

Networking and Connectivity

Tools

User Interfaces

QML Applications

페이지 1 / 5Qt for Windows - Deployment | QtDoc 5.3 | Documentation | Qt Project

2014-07-24http://qt-project.org/doc/qt-5/windows-deployment.html

cd ..\plugandpaintplugins
nmake clean
qmake -config release
nmake

If everything compiled and linked without any errors, we will get a plugandpaint.exe executable and the pnp_basictools.dll and pnp_extrafilters.dll plugin files.

Creating the Application Package
To deploy the application, we must make sure that we copy the relevant Qt DLLs (corresponding to the Qt modules used in the application) and the Windows platform
plugin, qwindows.dll, as well as the executable to the same directory tree in the release subdirectory.
In contrast to user plugins, Qt plugins have to be put into subdirectories matching the plugin type. The correct location for the platform plugin is a subdirectory named
platforms. Qt Plugins section has additional information about plugins and how Qt searches for them.
Qt relies on the ICU library for unicode support. Therefore, you must include the ICU DLLs that are located in the bin directory of your Qt installation if Qt was configured to
use ICU. The Qt version bundled in the Qt5 package uses ICU, so deployment is needed there. The ICU DLLs are version dependent and have to match the ones your Qt
version was linked against.
If you are using ANGLE (the default) then you additionally need to include both libEGL.dll and libGLESv2.dll from Qt's 'lib' directory as well as the HLSL compiler from
DirectX. The HLSL compiler library is called d3dcompiler_XX.dll where XX is the version number that ANGLE (libGLESv2) was linked against.
Remember that if your application depends on compiler specific libraries, these must be redistributed along with your application. You can check which libraries your
application is linking against by using the depends tool. For more information, see the Application Dependencies section.
We'll cover the plugins shortly, but first we'll check that the application will work in a deployed environment: Either copy the executable and the Qt DLLs to a machine that
doesn't have Qt or any Qt applications installed, or if you want to test on the build machine, ensure that the machine doesn't have Qt in its environment.
If the application starts without any problems, then we have successfully made a dynamically linked version of the Plug & Paint application. But the application's
functionality will still be missing since we have not yet deployed the associated plugins.
Plugins work differently to normal DLLs, so we can't just copy them into the same directory as our application's executable as we did with the Qt DLLs. When looking for
plugins, the application searches in a plugins subdirectory inside the directory of the application executable.
So to make the plugins available to our application, we have to create the plugins subdirectory and copy over the relevant DLLs:

plugins\pnp_basictools.dll
plugins\pnp_extrafilters.dll

An archive distributing all the Qt DLLs and application specific plugins required to run the Plug & Paint application, would have to include the following files:

In addition, the archive must contain the following compiler specific libraries depending on your version of Visual Studio:

If ICU was used, the archive must contain:

Finally, if ANGLE was used, then the archive must additionally contain:

To verify that the application now can be successfully deployed, you can extract this archive on a machine without Qt and without any compiler installed, and try to run it.
An alternative to putting the plugins in the plugins subdirectory is to add a custom search path when you start your application using QApplication::addLibraryPath() or
QApplication::setLibraryPaths().

qApp->addLibraryPath("C:\some\other\path");
One benefit of using plugins is that they can easily be made available to a whole family of applications.
It's often most convenient to add the path in the application's main() function, right after the QApplication object is created. Once the path is added, the application will
search it for plugins, in addition to looking in the plugins subdirectory in the application's own directory. Any number of additional paths can be added.

Manifest files
When deploying an application compiled with Visual Studio 2005 onwards, there are some additional steps to be taken.
First, we need to copy the manifest file created when linking the application. This manifest file contains information about the application's dependencies on side-by-side
assemblies, such as the runtime libraries.
The manifest file needs to be copied into the same folder as the application executable. You do not need to copy the manifest files for shared libraries (DLLs), since they
are not used.
If the shared library has dependencies that are different from the application using it, the manifest file needs to be embedded into the DLL binary. Since Qt 4.1.3, the
following CONFIG options are available for embedding manifests:

embed_manifest_dll
embed_manifest_exe

To use the options, add

CONFIG += embed_manifest_exe
to your .pro file. The embed_manifest_dll option is enabled by default. The embed_manifest_exe option is NOT enabled by default.
You can find more information about manifest files and side-by-side assemblies at the MSDN website.
The correct way to include the runtime libraries with your application is to ensure that they are installed on the end-user's system.
To install the runtime libraries on the end-user's system, you need to include the appropriate Visual C++ Redistributable Package (VCRedist) executable with your
application and ensure that it is executed when the user installs your application.
For example, on an 32-bit x86-based system, you would include the vcredist_x86.exe executable. The vcredist_IA64.exe and vcredist_x64.exe executables provide the
appropriate libraries for the IA64 and 64-bit x86 architectures, respectively.
Note: The application you ship must be compiled with exactly the same compiler version against the same C runtime version. This prevents deploying errors caused by
different versions of the C runtime libraries.

Component File Name
The executable plugandpaint.exe
The Basic Tools plugin plugins\pnp_basictools.dll
The ExtraFilters plugin plugins\pnp_extrafilters.dll
The Qt Windows platform plugin platforms\qwindows.dll
The Qt Core module Qt5Core.dll
The Qt GUI module Qt5Gui.dll
The Qt Widgets module Qt5Widgets.dll

VC++ 8.0 (2005) VC++ 9.0 (2008) VC++ 10.0 (2010)
The C run-time msvcr80.dll msvcr90.dll msvcr100.dll
The C++ run-time msvcp80.dll msvcp90.dll msvcp100.dll

File Name
icudtXX.dll icuinXX.dll icuucXX.dll

File Name
libEGL.dll libGLESv2.dll d3dcompiler_XX.dll

페이지 2 / 5Qt for Windows - Deployment | QtDoc 5.3 | Documentation | Qt Project

2014-07-24http://qt-project.org/doc/qt-5/windows-deployment.html

Manual installations with Visual Studio 2008 and 2010
As well as the above details for VS 2005 and onwards, Visual Studio 2008/2010 applications may have problems when deploying manually, say to a USB stick.
The recommended procedure is to configure Qt with the -plugin-manifests option using the 'configure' tool. Then follow the guidelines for manually deploying private
assemblies.
In brief the steps are

create a folder structure on the development computer that will match the target USB stick directory structure, for example '\app' and for your dlls, '\app\lib'.
on the development computer, from the appropriate 'redist' folder copy over Microsoft.VC80.CRT and Microsoft.VC80.MFC to the directories '\app' and '\app\lib' on
the development PC.
xcopy the \app folder to the target USB stick.

Your application should now run. Also be aware that even with a service pack installed the Windows DLLs that are linked to will be the defaults. See the information on how
to select the appropriate target DLLs.

Application Dependencies

Additional Libraries
Depending on configuration, compiler specific libraries must be redistributed along with your application.
For example, if Qt is built using ANGLE, its shared libraries and the required shared libraries of the Direct X SDK need to be shipped as well.
You can check which libraries your application is linking against by using the Dependency Walker tool. All you need to do is to run it like this:

depends <application executable>
This will provide a list of the libraries that your application depends on and other information.

When looking at the release build of the Plug & Paint executable (plugandpaint.exe) with the depends tool, the tool lists the following immediate dependencies to non-
system libraries:

When looking at the plugin DLLs the exact same dependencies are listed.

Qt Plugins
All Qt GUI applications require a plugin that implements the Qt Platform Abstraction (QPA) layer in Qt 5. For Windows, the name of the platform plugin is qwindows.dll. This
file must be located within a specific subdirectory (by default, platforms) under your distribution directory. Alternatively, it is possible to adjust the search path Qt uses to
find its plugins, as described below.
Your application may also depend on one or more Qt plugins, such as the print support plugin, the JPEG image format plugin or a SQL driver plugin. Be sure to distribute
any Qt plugins that you need with your application. Similar to the platform plugin, each type of plugin must be located within a specific subdirectory (such as printsupport,
imageformats or sqldrivers) within your distribution directory.
Note: If you are deploying an application that uses Qt WebKit to display HTML pages from the World Wide Web, you should include all text codec plugins to support as
many HTML encodings possible.
The search path for Qt plugins is hard-coded into the QtCore library. By default, the plugins subdirectory of the Qt installation is the first plugin search path. However, pre-
determined paths like the default one have certain disadvantages. For example, they may not exist on the target machine. For that reason, you need to examine various
alternatives to make sure that the Qt plugins are found:

Using qt.conf. This approach is the recommended if you have executables in different places sharing the same plugins.

Using QApplication::addLibraryPath() or QApplication::setLibraryPaths(). This approach is recommended if you only have one executable that will use the plugin.

Using a third party installation utility to change the hard-coded paths in the QtCore library.

If you add a custom path using QApplication::addLibraryPath it could look like this:

qApp->addLibraryPath("C:/customPath/plugins");
Then qApp->libraryPaths() would return something like this:

C:/customPath/plugins

C:/Qt/5.3.1/plugins

E:/myApplication/directory

The executable will look for the plugins in these directories and the same order as the QStringList returned by qApp->libraryPaths(). The newly added path is prepended to
the qApp->libraryPaths() which means that it will be searched through first. However, if you use qApp->setLibraryPaths(), you will be able to determine which paths and in
which order they will be searched.
The How to Create Qt Plugins document outlines the issues you need to pay attention to when building and deploying plugins for Qt applications.

Qt VC++ 8.0 (2005) VC++ 9.0 (2008) VC++ 10.0 (2010) MinGW
QT5CORE.DLL - The QtCore runtime

QT5GUI.DLL - The QtGui runtime

QT5WIDGETS.DLL - The QtWidgets
runtime

MSVCR80.DLL - The C
runtime

MSVCP80.DLL - The C++
runtime

MSVCR90.DLL - The C
runtime

MSVCP90.DLL - The C++
runtime

MSVCR100.DLL - The C
runtime

MSVCP100.DLL - The C++
runtime

MINGWM10.DLL - The MinGW
run-time

LIBGCC_S_DW2-1.DLL

LIBSTDC++-6.dll

페이지 3 / 5Qt for Windows - Deployment | QtDoc 5.3 | Documentation | Qt Project

2014-07-24http://qt-project.org/doc/qt-5/windows-deployment.html

The Windows Deployment Tool
The Windows deployment tool can be found in QTDIR/bin/windeployqt. It is designed to automate the process of creating a deployable folder that contains all libraries,
QML imports, plugins, translations that are required to run the application from that folder. This is used to create the sandbox for Windows Runtime or an installation tree
for Windows desktop applications that can be easily bundled by an installer.

Usage: windeployqt [options] [file]
Qt Deploy Tool 5.3.0

The simplest way to use windeployqt is to add the bin directory of your Qt
installation (e.g. <QT_DIR\bin>) to the PATH variable and then run:
 windeployqt <path-to-app-binary>
If ICU, ANGLE, etc. are not in the bin directory, they need to be in the PATH
variable. If your application uses Qt Quick, run:
 windeployqt --qmldir <path-to-app-qml-files> <path-to-app-binary>

Options:
 -?, -h, --help Displays this help.
 -v, --version Displays version information.
 --dir <directory> Use directory instead of binary directory.
 --libdir <path> Copy libraries to path.
 --debug Assume debug binaries.
 --release Assume release binaries.
 --force Force updating files.
 --dry-run Simulation mode. Behave normally, but do not
 copy/update any files.
 --no-plugins Skip plugin deployment.
 --no-libraries Skip library deployment.
 --qmldir <directory> Scan for QML-imports starting from directory.
 --no-quick-import Skip deployment of Qt Quick imports.
 --no-translations Skip deployment of translations.
 --no-system-d3d-compiler Skip deployment of the system D3D compiler.
 --compiler-runtime Deploy compiler runtime (Desktop only).
 --no-compiler-runtime Do not deploy compiler runtime (Desktop only).
 --webkit2 Deployment of WebKit2 (web process).
 --no-webkit2 Skip deployment of WebKit2.
 --json Print to stdout in JSON format.
 --list <option> Print only the names of the files copied.
 Available options:
 source: absolute path of the source files
 target: absolute path of the target files
 relative: paths of the target files, relative
 to the target directory
 mapping: outputs the source and the relative
 target, suitable for use within an
 Appx mapping file
 --verbose <level> Verbose level.

Qt libraries can be added by passing their name (-xml) or removed by passing
the name prepended by --no- (--no-xml). Available libraries:
bluetooth clucene concurrent core declarative designercomponents designer gui
clucene qthelp multimedia multimediawidgets multimediaquick network nfc opengl
positioning printsupport qml quick quickparticles script scripttools sensors
serialport sql svg test widgets winextras xml xmlpatterns

Arguments:
 [file] Binary or directory containing the binary.

Copyright 2013 Digia Plc and/or it's subsidiaries. Documentation contributions included herein are the copyrights of their respective owners.
Information about Qt licenses are available in the Qt Licensing page.

Hide Notes
Notes provided by the Qt Community
Sorted by:
Rating
Date

Missing Opengl ES dlls may cause windows plugin issues
Even if you have qwindows.dll in the platforms folder, you may still see an error saying that there is no platform plugin. this
could be due to missing opengl es dlls:

libEGL.dll
libGLESv2.dll

the error message is not very intuitive.

Informative

Votes: 1
Coverage: Qt 5

billconan
Ant Farmer
6 notes

5

페이지 4 / 5Qt for Windows - Deployment | QtDoc 5.3 | Documentation | Qt Project

2014-07-24http://qt-project.org/doc/qt-5/windows-deployment.html

