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A method is developed to derive algebraic equations for the geometric measure of entanglement of three-
qubit pure states. The equations are derived explicitly and solved in the cases of most interest. These equations
allow one to derive analytic expressions of the geometric entanglement measure in a wide range of three-qubit
systems, including the general class of W states and states which are symmetric under the permutation of two
qubits. The nearest separable states are not necessarily unique, and highly entangled states are surrounded by
a one-parametric set of equally distant separable states. A possibility for physical applications of the various
three-qubit states to quantum teleportation and superdense coding is suggested from the aspect of
entanglement.
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I. INTRODUCTION

Entangled states have different remarkable applications,
and among them are quantum cryptography �1,2�, superdense
coding �3,4�, teleportation �5,6�, and the potential speedup of
quantum algorithms �7–9�. The entanglement of bipartite
systems is well understood �10–13�, while the entanglement
of multipartite systems offers a real challenge to physicists.
In contrast to a bipartite setting, there is no unique treatment
of the maximally entangled states for multipartite systems.
For this reason it is highly difficult to formulate a theory of
multipartite entanglement. Another point which makes it dif-
ficult to understand the entanglement for the multiqubit sys-
tems is mainly due to the fact that analytic expressions for
the various entanglement measures are extremely hard to de-
rive.

We consider pure three-qubit systems �14–17�, although
the entanglement of mixed states has attracted considerable
attention. For example, in a recent experiment �18� the tangle
for general mixed states was evaluated, which had never
been done before. The three-qubit system is important in the
sense that it is the simplest system which gives a nontrivial
effect in the entanglement. Thus, we should understand the
general properties of the entanglement in this system as
much as possible to go further to more complicated higher-
qubit systems. The three-qubit system can be entangled in
two inequivalent ways—Greenberger-Horne-Zeilinger
�GHZ� �19� and W—and neither form can be transformed
into the other with any probability of success �20�. This pic-
ture is complete: any fully entangled state is SLOCC equiva-
lent to either the GHZ or W method.

Only very few analytical results for tripartite entangle-
ment have been obtained so far �21�, and we need more light
on the subject. This is our main objective, and we choose the
geometric measure of entanglement Eg �22–25�. It is an axi-
omatic measure �22,26–28�, is connected with other mea-
sures �29,30�, and has an operational treatment. Namely, for
the case of pure states it is closely related to the Groverian
measure of entanglement �31� and the latter is associated
with the success probability of Grover’s search algorithm
�32� when a given state is used as the initial state.

The geometric measure depends on the entanglement ei-
genvalue �max

2 and is given by the formula Eg���=1−�max
2 .

For pure states the entanglement eigenvalue is equal to the
maximal overlap of a given state with any complete product
state. The maximization over product states gives a nonlin-
ear eigenproblem �25� which, except in rare cases, does not
allow complete analytical solutions.

Recently the idea was suggested that the nonlinear eigen-
problem can be reduced to the linear eigenproblem for the
case of three-qubit pure states �33�. The idea is based on a
theorem stating that any reduced �n−1�-qubit state uniquely
determines the geometric measure of the original n-qubit
pure state. This means that two qubit mixed states can be
used to calculate the geometric measure of three-qubit pure
states and this will be fully addressed in this work.

The method gives two algebraic equations of degree 6
defining the geometric measure of entanglement. Thus the
difficult problem of geometric measure calculations is re-
duced to algebraic equation root finding. The equations con-
tain valuable information, are good bases for the numerical
calculations, and may test numerical calculations based on
other numerical techniques �9�.

Furthermore, the method allows one to find the nearest
separable states for three-qubit states of most interest and
obtain analytic expressions for their geometric measures. It
turn out that highly entangled states have their own features.
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Each highly entangled state has a vicinity with no product
state, and all nearest product states are on the boundary of
the vicinity and form an one-parametric set.

In Sec. II we derive algebraic equations defining the geo-
metric entanglement measure of pure three-qubit states and
present the general solution. In Sec. III we examine W-type
states and deduce analytic expressions for their geometric
measures. States symmetric under the permutation of two
qubits are considered in Sec. IV, where the overlap of the
state functions with the product states is maximized directly.
In Sec. V we give concluding remarks.

II. ALGEBRAIC EQUATIONS

We consider three qubits A, B, and C with state function
���. The entanglement eigenvalue is given by

�max = max
q1q2q3

��q1q2q3���� , �1�

and the maximization runs over all normalized complete
product states �q1� � �q2� � �q3�. Superscripts label single-
qubit states, and spin indices are omitted for simplicity. Since
in the following we will use density matrices rather than
state functions, our first aim is to rewrite Eq. �1� in terms of
density matrices. Let us denote by �ABC= ������ the density
matrix of the three-qubit state and by �k= �qk��qk� the density
matrices of the single-qubit states. The equation for the
square of the entanglement eigenvalue takes the form

�max
2 ��� = max

�1�2�3
tr��ABC�1

� �2
� �3� . �2�

An important equality

max
�3

tr��ABC�1
� �2

� �3� = tr��ABC�1
� �2

� 13� �3�

was derived in Ref. �33� where 1 is a unit matrix. It has a
clear meaning. The matrix tr��ABC�1 � �2� is a 2 � 2 Hermit-
ian matrix and has two eigenvalues. One of the eigenvalues
is always zero and the other is always positive, and therefore
the maximization of the matrix simply takes a nonzero ei-
genvalue. Note that its minimization gives zero as the mini-
mization takes the zero eigenvalue.

We use Eq. �3� to reexpress the entanglement eigenvalue
by the reduced density matrix �AB of qubits A and B in the
form

�max
2 ��� = max

�1�2
tr��AB�1

� �2� . �4�

We denote by s1 and s2 the unit Bloch vectors of the density
matrices �1 and �2, respectively, and adopt the usual sum-
mation convention on repeated indices i and j. Then,

�max
2 =

1

4
max

s1
2=s2

2=1

�1 + s1 · r1 + s2 · r2 + gijs1is2j� , �5�

where

r1 = tr��A�� ,

r2 = tr��B�� ,

gij = tr��AB�i � � j� �6�

and �i’s are Pauli matrices. The matrix gij is not necessarily
symmetric, but must have only real entries. The maximiza-
tion gives a pair of equations

r1 + gs2 = �1s1, r2 + gTs1 = �2s2, �7�

where the Lagrange multipliers �1 and �2 enforce the unit
nature of the Bloch vectors. The solution of Eq. �7� is

s1 = ��1�21 − ggT�−1��2r1 + gr2� , �8a�

s2 = ��1�21 − gTg�−1��1r2 + gTr1� . �8b�

Now, the only unknowns are Lagrange multipliers, which
should be determined by the equations

�s1�2 = 1, �s2�2 = 1. �9�

In general, Eqs. �9� give two algebraic equations of degree 6.
However, the solution �8a� and �8b� is valid if Eq. �7� sup-
ports a unique solution and this is by no means always the
case. If the solution of Eq. �7� contains a free parameter, then
det��1�21−ggT�=0 and, as a result, Eqs. �8a� and �8b� cannot
be applicable. The example presented in Sec. III will dem-
onstrate this situation.

In order to test Eqs. �8a� and �8b� let us consider an arbi-
trary superposition of W,

�W� =
1
�3

��100� + �010� + �001�� �10�

and flipped W,

�W̃� =
1
�3

��011� + �101� + �110�� �11�

states—i.e., the state

��� = cos ��W� + sin ��W̃� . �12�

Straightforward calculation yields

r1 = r2 =
1

3
�2 sin 2�i + cos 2�n� , �13a�

g =
1

3	2 0 0

0 2 0

0 0 − 1

 , �13b�

where the unit vectors i and n are aligned with the axes x and
z, respectively. Both vectors i and n are eigenvectors of ma-
trices g and gT. Therefore s1 and s2 are linear combinations
of i and n. Also from r1=r2 and g=gT it follows that s1=s2
and �1=�2. Then Eqs. �8a� and �8b� for a general solution
gives

s1 = s2 = sin 2�i + cos 2�n �14�

where

sin 2� =
2 sin 2�

3� − 2
, cos 2� =

cos 2�

3� + 1
. �15�

Elimination of the Lagrange multiplier � from Eq. �15� gives
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3 sin 2� cos 2� = cos 2� sin 2� − 2 sin 2� cos 2� .

�16�

Let us denote t=tan �. After the separation of the irrelevant
root t=−tan �, Eq. �16� takes the form

sin �t3 + 2 cos �t2 − 2 sin �t − cos � = 0. �17�

This equation exactly coincides with that derived in Ref.
�25�. Since a detailed analysis was given in Ref. �25�, we do
not want to repeat the same calculation here. Instead we
would like to consider the three-qubit states that allow ana-
lytic expressions for the geometric entanglement measure by
making use of Eq. �7�.

III. W-TYPE STATES

Consider the W-type state

��� = a�100� + b�010� + c�001�, a2 + b2 + c2 = 1. �18�

Without loss of generality we consider only the case of posi-
tive parameters a, b, and c. Direct calculation yields

r1 = r1n, r2 = r2n, g = 	� 0 0

0 � 0

0 0 − r3

 , �19�

where

r1 = b2 + c2 − a2, r2 = a2 + c2 − b2, r3 = a2 + b2 − c2,

�20�

and �=2ab. The unit vector n is aligned with the z axis. Any
vector perpendicular to n is an eigenvector of g with eigen-
value �. Then from Eq. �7� it follows that the components of
vectors s1 and s2 perpendicular to n are collinear. We denote
by m the unit vector along that direction and parametrize the
vectors s1 and s2 as follows:

s1 = cos 	n + sin 	m, s2 = cos 
n + sin 
m . �21�

Then Eq. �7� reduces to the four equations

r1 − r3 cos 
 = �1 cos 	, r2 − r3 cos 	 = �2 cos 
 ,

�22a�

� sin 
 = �1 sin 	, � sin 	 = �2 sin 
 , �22b�

which are used to solve the four unknown constants �1, �2,
	, and 
. Equation �22b� imposes either

�1�2 − �2 = 0 �23�

or

sin 	 sin 
 = 0. �24�

First consider the case r1�0, r2�0, and r3�0 and coeffi-
cients a, b, and c form an acute triangle. Equation �24� does
not give a true maximum, and this can be understood as
follows. If both vectors s1 and s2 are aligned with the z axis,
then the last term in Eq. �5� is negative. If the vectors s1 and
s2 are antiparallel, then one of scalar products in Eq. �5� is

negative. For this reason �max
2 cannot be maximal. Then Eq.

�23� gives the true maximum and we have to choose positive
values for �1 and �2 to get the maximum.

First we use Eq. �22a� to connect the angles 	 and 
 with
the Lagrange multipliers �1 and �2:

cos 	 =
�2r1 − r2r3

�2 − r3
2 , cos 
 =

�1r2 − r1r3

�2 − r3
2 . �25�

Then Eqs. �22b� and �23� give the following expressions for
Lagrange multipliers �1 and �2:

�1 = ���2 + r1
2 − r3

2

�2 + r2
2 − r3

2�1/2

, �26a�

�2 = ���2 + r2
2 − r3

2

�2 + r1
2 − r3

2�1/2

. �26b�

Equation �7� allows one to write a shorter expression for
the entanglement eigenvalue:

�max
2 =

1

4
�1 + �2 + r1 cos 	� . �27�

Now we insert the values of �2 and cos 	 into Eq. �27� and
obtain

4�max
2 = 1 +

����2 + r1
2 − r3

2���2 + r2
2 − r3

2� − r1r2r3

�2 − r3
2 .

�28�

The denominator in the above expression is a multiple of the
area S of the triangle a ,b ,c:

�2 − r3
2 = 16S2. �29�

A little algebra yields for the numerator

����2 + r1
2 − r3

2� + ��2 + r2
2 − r3

2� − r1r2r3

= 16a2b2c2 − �2 + r3
2. �30�

Combining together the numerator and denominator, we
obtain the final expression for the entanglement eigenvalue:

�max
2 = 4R2, �31�

where R is the circumradius of the triangle a ,b ,c. The en-
tanglement value is minimal when the triangle is regular—
i.e., for the W state and �max

2 �W�=4 /9 �25,34�.
Now consider the case r3�0. Since r3+r1=2b20, we

have r1�0 and similarly r2�0. Equation �24� gives the true
maximum in this case, and both vectors are aligned with the
z axis,

s1 = s2 = n , �32�

resulting in �max
2 =c2. In view of symmetry,

�max
2 = max�a2,b2,c2�, max�a2,b2,c2� �

1

2
. �33�

Since the matrix g and vectors r1 and r2 are invariant under
rotations around the z axis, the same properties must have
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Bloch vectors s1 and s2. There are two possibilities.
�i� Bloch vectors are unique and aligned with the z axis.

The solution given by Eq. �32� corresponds to this situation,
and the resulting entanglement eigenvalue, Eq. �33�, satisfies
the inequality

1

2
� �max

2 � 1. �34�

�ii� Bloch vectors have nonzero components in the xy
plane, and the solution is not unique. Equation �21� corre-
sponds to this situation and contains a free parameter. The
free parameter is the angle defining the direction of the vec-
tor m in the xy plane. Then Eq. �31� gives the entanglement
eigenvalue in the highly entangled region:

4

9
� �max

2 �
1

2
. �35�

Equation �31� and �33� have joint curves when the param-
eters a, b, and c form a right triangle and give �max

2 =1 /2.
The GHZ states have same entanglement value, and it seems
to imply something interesting. The GHZ state can be used
for teleportation and superdense coding, but the W state can-
not. However, the W-type state with right triangle coeffi-
cients can be used for teleportation and superdense coding
�35�. In other words, both types of states can be applied
provided they have the required entanglement eigenvalue
�max

2 =1 /2.

IV. SYMMETRIC STATES

Now let us consider the state which is symmetric under
permutation of qubits A and B and contains three real inde-
pendent parameters

��� = a�000� + b�111� + c�001� + d�110� , �36�

where a2+b2+c2+d2=1. According to generalized Schmidt
decomposition �14� the states with different sets of param-
eters are local-unitary �LU� inequivalent. The relevant quan-
tities are

r1 = r2 = rn, g = 	� 0 0

0 − � 0

0 0 1

 , �37�

where

r = a2 + c2 − b2 − d2, � = 2ad + 2bc , �38�

and the unit vector n again is aligned with the z axis.
All three terms on the left-hand side �lhs� of Eq. �5� are

bounded above: �i� s1 ·r1� �r�, �ii� s2 ·r2� �r�, and �iii� owing
to inequality ����1, gijs1is2j �1.

Quite surprisingly all upper limits are reached simulta-
neously at

s1 = s2 = sgn�r�n , �39�

which results in

�max
2 =

1

2
�1 + �r�� . �40�

This expression has a clear meaning. To understand it we
parametrize the state as

��� = k1�00q1� + k2�11q2� , �41�

where q1 and q2 are arbitrary single-qubit normalized states
and the positive parameters k1 and k2 satisfy k1

2+k2
2=1. Then,

�max
2 = max�k1

2,k2
2�; �42�

i.e., the maximization takes a larger coefficient in Eq. �41�.
In the bipartite case the maximization takes the largest coef-
ficient in Schmidt decomposition �31,36� and in this sense
Eq. �41� effectively takes the place of Schmidt decomposi-
tion. When �q1�= �0� and �q2�= �1�, Eq. �42� gives the known
answer for a generalized GHZ state �25,34�.

The entanglement eigenvalue is minimal �max
2 =1 /2 on

the condition that k1=k2. These states can be described as
follows:

��� = �00q1� + �11q2� , �43�

where q1 and q2 are arbitrary single-qubit normalized states.
The entanglement eigenvalue is constant �max

2 =1 /2 and does
not depend on single-qubit state parameters. Hence one may
expect that all these states can be applied for teleportation
and superdense coding. It would be interesting to check
whether this assumption is correct or not.

It turns out that the GHZ state is not a unique state and is
one of two-parametric LU-inequivalent states that have
�max

2 =1 /2. On the other hand, the W state is unique up to
LU transformations and the low bound �max

2 =4 /9 is reached
if and only if a=b=c. However, one cannot make such con-
clusions in general. Five real parameters are necessary to
parametrize the set of inequivalent three-qubit pure states
�14�. And there is no explicit argument that the W state is not
just one of LU-inequivalent states that have �max

2 =4 /9.

V. SUMMARY

We have derived algebraic equations defining the geomet-
ric measure of three-qubit pure states. These equations have
a degree higher than 4, and explicit solutions for general
cases cannot be derived analytically. However, explicit ex-
pressions are not important. Remember that explicit expres-
sions for the algebraic equations of degree 3 and 4 have a
limited practical significance, but the equations themselves
are more important. This is especially true for equations of
higher degree; the main results can be derived from the equa-
tions rather than from the expressions of their roots.

Equation �7� gives the nearest separable state directly, and
this separable state has useful applications. In order to con-
struct an entanglement witness, for example, the crucial
point lies in finding the nearest separable state �37�. This will
be especially interesting for highly entangled states that have
a whole set of nearest separable states and allow one to con-
struct a set of entanglement witnesses.

The expression on the rhs of Eq. �5� can be maximized
directly for various three-qubit states. Although it is very
hard to solve the higher-degree equation, it turns out that a
wide range of three-qubit states has a symmetry and this
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symmetry reduces the equations of degree 6 to the quadratic
equations. For this reason Eq. �5� can be used to derive the
analytic expressions of the various entanglement measures
for the three-qubit states. Also Eq. �5� can be a starting point
to explore the numerical computation of the entanglement
measures for higher-qubit systems. We hope to discuss this
issue elsewhere.
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