야간 및 악천후 시 고령운전자 노면시인성 증진방안 연구

- 운전행동 분석 중심으로

2013. 12
목 차

■ 연구 요약

■ 제1장 서론 / 3
 제1절 연구배경 3
 제2절 연구목적 4
 제3절 연구내용 및 방법 4
 1. 연구내용 4
 2. 연구방법 5
 제4절 연구수행절차 5

■ 제2장 선행연구/9
 제1절 고령운전자의 특성 9
 1. 고령운전자의 정의 9
 2. 고령운전자의 특성 10
 3. 고령인구 및 고령운전자 추이 16
 제2절 고령운전자와 교통안전 18
 1. 고령운전자 교통사고 특성 18
 2. 기상상태별 교통사고 현황 20
 3. 고령운전자 관련연구 23

■ 제3장 모의주행실험/33
 제1절 실험개요 33
 1. 실험목적 33
 2. 실험내용 및 방법 33
 제2절 모의주행실험 36
 제3절 실험결과 39
 1. 정주행률 39
 2. 주행속도 47

■ 제4장 맺음말/53

■ 참고문헌
표 목차

〈표 2-1〉 우리나라 법률 및 통계조사에서 적용하는 고령자 기준 9
〈표 2-2〉 고령운전자의 신체적, 인지적 특성 종합 15
〈표 2-3〉 연도별 고령인구 및 고령운전자 현황 17
〈표 2-4〉 고령운전자 사고발생 현황 18
〈표 2-5〉 법규위반내용별 고령운전자 사고발생 현황(2012년) 19
〈표 2-6〉 도로행렬별 고령운전자 사고발생 현황(2012년) 20
〈표 2-7〉 최근 5년 간 기상별 교통사고 발생현황 21
〈표 2-8〉 최근 5년 간 기상별 고령운전자 교통사고 발생현황 22
〈표 2-7〉 고령운전자의 누적반응시간 26

〈표 3-1〉 피실험자 인적사항 33
〈표 3-2〉 실험조건 및 주행속도 37
〈표 3-3〉 연령층 및 기상조건에 따른 차선이탈회수에 변량분석 결과 39
〈표 3-4〉 연령층별·기상조건별 평균 차선이탈회수 40
〈표 3-5〉 연령층 및 기상조건에 따른 차선이탈시간에 변량분석 결과 42
〈표 3-6〉 연령층별·기상조건별 평균 차선이탈시간 42
〈표 3-7〉 연령층 및 기상조건에 따른 차량과 차선중심선 간에 변량분석 결과 43
〈표 3-8〉 연령층 및 기상조건별 차량과 차선 중심선 간 거리 44
〈표 3-9〉 연령층 및 기상조건에 따른 차량중심과 차선중심 간 거리편차의 변량분석 결과 45
〈표 3-10〉 연령층별·기상조건별 차량과 차선중심 간 거리편차 45
〈표 3-11〉 연령층 및 기상조건에 따른 평균 주행속도에 변량분석 결과 47
〈표 3-12〉 연령층별·기상조건별 평균 주행속도 차에 대한 t-test 47
〈표 3-13〉 연령층 및 기상조건에 따른 차선이탈시간에 변량분석 결과 48
〈표 3-14〉 연령층별·기상조건별 주행속도편차 49
그림 목차

〈그림 1-1〉 맑은 날과 비오는 날 노면시인성 비교 3
〈그림 1-2〉 연구수행절차 6

〈그림 2-1〉 우리나라 인구연령 구조 16
〈그림 2-2〉 고령인구 및 고령운전자 추이 17
〈그림 2-3〉 고령운전자 교통사고 발생건수 및 사망자 추이 19
〈그림 2-4〉 고령운전자의 범규위반별 교통사고 현황(2012년) 20
〈그림 2-5〉 기상상태별 교통사고 점유율(좌: 전체 / 우: 고령운전자) 22
〈그림 2-6〉 기상상태별 사망사고 점유율(좌: 전체 / 우: 고령운전자) 23
〈그림 2-7〉 연속운동 유형별 누적반응시간 26
〈그림 2-8〉 연령별 사고율 분포 27
〈그림 2-9〉 안개시정 측정시스템 구동화면 29

〈그림 3-1〉 차량 주행시뮬레이션 시스템 31
〈그림 3-2〉 동형대비 차량 주행시뮬레이터 34
〈그림 3-3〉 360도 영상 시스템 35
〈그림 3-4〉 모니터링 시스템 35
〈그림 3-5〉 고속도로 주행로 36
〈그림 3-6〉 맑은 날 주간 도로상황 38
〈그림 3-7〉 맑은 날 야간 도로상황 38
〈그림 3-8〉 안개낀 날 I 주간 38
〈그림 3-9〉 안개낀 날 II 주간 39
〈그림 3-10〉 연령층별·기상조건별 평균 차선이탈회수 41
〈그림 3-11〉 연령층별·기상조건별 평균 차선이탈시간 43
〈그림 3-12〉 연령층별·기상조건별 차량과 차선 중심선과의 거리 44
〈그림 3-13〉 연령층별·기상조건별 차량과 차선 중심 간 거리편차 46
(그림 3-14) 최대운행속도 대비 중심거리 간 편차
(그림 3-15) 연령층별·기상조건별 평균 주행속도
(그림 3-16) 연령층별·기상조건별 주행속도 편차
(그림 3-17) 최대운행속도 대비 평균 차선이탈시간

(그림 4-1) 악천후 시 고령운전자용 전조등
(그림 4-2) 부산구포대교 라인조명 설치사례
요약

아간 및 악천후 시 고령운전자 노면시인성 증진방안 연구
- 운전행동 분석 중심으로

제1장 서론

1. 연구배경

○ 최근 국지성 호우 및 감각스러운 기상이변으로 인해 도로주행 시 운전자의 노면시인성 결여 현상이 자주 발생하여 안전이 문제가 되고 있다.
 - 장마철 폭우, 가을과 겨울, 일교차가 심하게 발생하고 있어 새벽과 야간에 안개가 많이 발생하여 운전자가 시야를 확보가 곤란
 - 비오는 날과 눈오는 날의 경우 도로 표면마찰력이 감소, 조종능력을 잃어 차량의 제어가 어려움

○ 최근 5년간(2008-2012년) 기상상태별 도로교통사고 점유율을 보면, 비가 오거나 흐린 날의 교통사고는 2008년 이후 지속적으로 증가
 - 맑은 날의 교통사고 치사율이 1.55인대 비해 안개 진 날은 4.89로 3.15배 높음. 흐린 날과 비오는 날의 치사율도 각각 2.37과 1.85로 맑은 날에 비해 1.53배와 1.19배 높음
 - 야간 교통사고 점유율은 2007년 49.89에서 2011년 48.50%로 감소하였으나 야간사고 치사율은 주간사고와 비교하여 여전히 높은 수준.

○ 고령 운전자의 경우 신체가 노화되면서 시인성이 급격히 저하되고, 터널이 녹내장, 백내장, 당뇨, 각막의 퇴화 등과 같은 노인성 질환이 많이 발생하여 시각적 기능의 문제가 발생, 야간이나 악천후 시 노면시인성 결여 현상에 더욱 민감하게 반응하여 교통사고를 더욱 증가시킬 수 있음.
요약

2. 연구목적

○ 야간 및 안개 상황에서 청년운전자와 고령운전자의 운전행태를 비교·분석 하여 고령운전자의 시인성 향상 방안을 모색

3. 연구내용 및 방법

○ 문헌조사 등을 통하여 고령운전자 현황 및 고령자 교통사고현황을 조사하였으며, 고령운전자의 신체적, 인지적 능력을 조사
○ 고령운전자의 시각적, 인지적, 신체적 능력 감퇴와 교통사고, 운전능력과의 관계 등을 분석함. 또한 야간 및 안개상황에서 고령운전자의 운전능력을 평가하기 위한 모의주행실험 설계를 위한 시나리오 구성 및 데이터 수집을 위한 프로그램을 구축하였으며, 고령운전자와 청년운전자 간 운전능력 차이를 통계적으로 비교, 분석

제2장 선행연구

1. 고령운전자 현황

○ 고령인구 증가율 : 연평균 4.7%, 고령운전자 증가율 : 연평균 15.5%

<table>
<thead>
<tr>
<th>연도</th>
<th>총인구(명)</th>
<th>고령인구(명)</th>
<th>고령운전자 수(명)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>47,357,362</td>
<td>3,578,370</td>
<td>362,156</td>
</tr>
<tr>
<td>2002</td>
<td>47,622,179</td>
<td>3,772,075</td>
<td>435,401</td>
</tr>
<tr>
<td>2003</td>
<td>47,859,311</td>
<td>3,968,118</td>
<td>517,213</td>
</tr>
<tr>
<td>2004</td>
<td>48,039,415</td>
<td>4,165,974</td>
<td>610,759</td>
</tr>
<tr>
<td>2005</td>
<td>48,138,077</td>
<td>4,366,642</td>
<td>705,414</td>
</tr>
<tr>
<td>2006</td>
<td>48,371,946</td>
<td>4,592,367</td>
<td>813,236</td>
</tr>
<tr>
<td>2007</td>
<td>48,597,652</td>
<td>4,827,514</td>
<td>950,695</td>
</tr>
<tr>
<td>2008</td>
<td>48,948,698</td>
<td>5,052,155</td>
<td>1,069,774</td>
</tr>
<tr>
<td>2009</td>
<td>49,182,038</td>
<td>5,255,835</td>
<td>1,184,941</td>
</tr>
<tr>
<td>2010</td>
<td>49,410,366</td>
<td>5,452,490</td>
<td>1,299,913</td>
</tr>
<tr>
<td>2011</td>
<td>49,779,440</td>
<td>5,655,990</td>
<td>1,431,437</td>
</tr>
<tr>
<td>2012</td>
<td>50,004,441</td>
<td>5,889,675</td>
<td>-</td>
</tr>
</tbody>
</table>

표 1: 연도별 고령인구 및 고령운전자 현황
2. 고령운전자 교통사고 현황

○ 65세 이상의 고령운전자들이 발생사고
 - 1992년 1천여건→2012년 15,176건(13배 증가)
 - 2012년 기준, 고령운전자중 사망자 718명, 부상자 22,028명이 발생
 - 고령운전자 사고의 치사율 : 4.7 (전체사고 치사율 2.4에 비해 2배 높음)

〈표 2〉고령운전자 사고 발생 현황

<table>
<thead>
<tr>
<th>연도</th>
<th>고령운전자 사고 발생건수(건)</th>
<th>고령운전자 사고 사망자수(명)</th>
<th>치사율</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>3,768</td>
<td>233</td>
<td>6.2</td>
</tr>
<tr>
<td>2002</td>
<td>3,810</td>
<td>258</td>
<td>6.8</td>
</tr>
<tr>
<td>2003</td>
<td>4,562</td>
<td>306</td>
<td>6.7</td>
</tr>
<tr>
<td>2004</td>
<td>5,184</td>
<td>390</td>
<td>7.5</td>
</tr>
<tr>
<td>2005</td>
<td>6,111</td>
<td>414</td>
<td>6.8</td>
</tr>
<tr>
<td>2006</td>
<td>7,131</td>
<td>473</td>
<td>6.6</td>
</tr>
<tr>
<td>2007</td>
<td>8,326</td>
<td>514</td>
<td>6.2</td>
</tr>
<tr>
<td>2008</td>
<td>10,132</td>
<td>559</td>
<td>5.5</td>
</tr>
<tr>
<td>2009</td>
<td>11,974</td>
<td>585</td>
<td>4.9</td>
</tr>
<tr>
<td>2010</td>
<td>12,603</td>
<td>546</td>
<td>4.3</td>
</tr>
<tr>
<td>2011</td>
<td>13,583</td>
<td>605</td>
<td>4.5</td>
</tr>
<tr>
<td>2012</td>
<td>15,176</td>
<td>718</td>
<td>4.7</td>
</tr>
</tbody>
</table>

3. 고령운전자의 시각적 특성

○ 고령자들은 시각, 청각, 지각 등의 감각에 있어서 청·장년층에 비하여 능력이 감소되는 현상
 - 감각 기능의 저하는 노년층 운전자의 적절한 반응저하 및 교통사고 가능성을 높음
 - 일반적으로 50세를 넘기면서 시각적인 쇠퇴현상 발생

○ 도로를 이용하는 운전자나 보행자는 시각을 통하여 많은 정보를 얻는다. 도로의 구조, 교통류의 제어 장치, 주변의 차량과 보행자, 그리고 여러 가지 잠재적 위험물을 인지하도록 한다. 그러나 노년층이 되면서 녹내장, 백내장, 당뇨, 각막의 퇴화 등으로 시각적 기능이 저하된다.
요 약

- 고령화됨에 따라 수정체의 황색화 및 수정체가 두꺼워지는 현상으로 색을 식별하는 기능이 저하, 망막에 도달하는 빛의 양을 감소로 물체 식별능력 저하
- 정시된 물체에 대한 식별 능력으로 40~50세가 되면 감퇴 시작
- 움직이는 물체에 대한 식별능력으로 연령이 증가함에 따라 감소, 연령이 70세에 이르면 약 60%가 감소(운전 중 도로의 표지판의 정보, 보행 중 교통안 내문이나 표지판 등을 판별하는 능력이 이에 해당)

- 시각적 대비감도는 20세부터 점차적으로 감소하며 40, 50대 시기에 가장 많이 감소
- 시야의 폭이 감소, 눈으로부터 받아들인 정보를 뇌에서 처리하는 과정에서 제약을 받아 시각적으로 감지했지만 인식하지 못하여 사고를 유발시
- 눈부심에 대한 민감도는 20세에 비해서 60세에 약 3배 증가, 야간은 눈부심 현상으로 인한 회복시간이 오래 걸림
- 암순응 시간은 연령이 증가함에 따라서 증가

4. 고령운전자 관련연구

○ 시각적 특성관련 연구

<table>
<thead>
<tr>
<th>저 자</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosurgi G.(2005)</td>
<td>고령운전자의 경우 시력 악화로 인한 인지력 악화로 판단력의 변화를 유발시키게 되고 이는 전체 인지반응시간의 증가를 유발</td>
</tr>
<tr>
<td>김정오(1993)</td>
<td>눈, 비, 안개 등 민감도가 취약한 고령운전자들이 빠른 속도로 움직이는 차량을 사전에 정확히 인지하지 못함</td>
</tr>
<tr>
<td>Johnson and Keltner(1983)</td>
<td>65세 이상의 운전자들이 60세 이하의 운전자들보다 시각능력이 더욱 감소</td>
</tr>
</tbody>
</table>
○ 인지적 특성 관련 연구

<table>
<thead>
<tr>
<th>저 자</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brouwer(1994)</td>
<td>고령운전자들이 젊은 운전자들에 비해 주의분산 및 처리능력이 통계적으로 낮음</td>
</tr>
<tr>
<td>J.L. Malfetti(1985)</td>
<td>운전상황에 대한 정보처리와 관련하여, 부정확한 의사결정 및 운전과 관련된 판단능력저하 유발</td>
</tr>
<tr>
<td>T.W. Planek(1973)</td>
<td>운전자의 연령증가는 인지변화(저하)를 발생</td>
</tr>
<tr>
<td>Wolfelaar(1991)</td>
<td>고령운전자 운전 중 의사결정은 젊은 운전자들에 비해 50%이상 더 많은 시간이 소요</td>
</tr>
</tbody>
</table>

○ 행동반응 특성 관련 연구

<table>
<thead>
<tr>
<th>저 자</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>J.L. Malfetti(1985)</td>
<td>고령운전자들은 반응속도가 느려짐</td>
</tr>
<tr>
<td>Staplin(1990)</td>
<td>고령층 운전자에 대한 운동반응저하 유발</td>
</tr>
<tr>
<td>이원영(2006)</td>
<td>고령운전자가 복잡하고 위험한 상황에서는 오류를 증가시키게 되며, 이를 인한 교통사고를 발생시키는 경향</td>
</tr>
<tr>
<td>Rui Ni(2007)</td>
<td>청년층과 고령층을 대상으로 안개가 섭한 도로를 주행하는 시뮬레이션 실험을 수행, 고령운전자가 반응시간이 길어지고 정확성 저하</td>
</tr>
<tr>
<td>Lana M. Trick(2010)</td>
<td>고령운전자를 대상으로 안개가 섭한 날과 안개가 적전후를 대상으로 주행 시뮬레이션 실험 시지각 기능저하 등으로 사고위험이 증가</td>
</tr>
</tbody>
</table>

○ 고령운전자의 교통사고 특성

<table>
<thead>
<tr>
<th>저 자</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>강수철(2013)</td>
<td>고령운전자와 비교고령운전자를 대상으로 속도예측검사, 선택반응검사, 정예물 회피검사 등을 수행, 고령운전자가 반응시간과 조작행동에 있어 늦어질 가능성이 높아 교통사고 위험성이 증대</td>
</tr>
<tr>
<td>Cooper(1990)</td>
<td>고령운전자가 방향전환 시에 법규위반이 많으며 특히 65세 이상의 운전자들이 두드러진 차이를 보임</td>
</tr>
<tr>
<td>Cerrelli(1980), Hakamies(1993),</td>
<td>고령운전자의 교통사고는 다른 연령층에 비해 급격히 증가함을 밝히고 고령층 운전자들의 지각저하와 부적절한 반응 때문임</td>
</tr>
</tbody>
</table>
요 약

<table>
<thead>
<tr>
<th>저 자</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stamatiadis(1991)</td>
<td>고령운전자와 대항차량의 거리, 대항차량의 도달시간 판단 등이 용이하지 않음</td>
</tr>
<tr>
<td>Henriksson(1999)</td>
<td>운전 시뮬레이터를 이용한 고령운전자의 운전행동 특성을 분석, 복잡한 도로환경에서의 고령자 심장활동변화가 낮아지는 경향, 고령운전자들이 운전 환경수준이 낮기 때문임</td>
</tr>
<tr>
<td>민병찬(2009)</td>
<td></td>
</tr>
</tbody>
</table>

4. 야간 및 악천후 시 운전능력 저하

○ 국내 관련연구

<table>
<thead>
<tr>
<th>저 자</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>이승면(2012)</td>
<td>야간 및 기상악화로 인해 발생하는 교통사고는 주간에 비해 차서율이 2배 이상 높아 야간에 대한 대비가 필요하며, 곡선부 도로에서의 안전시설물로 메릴형 표지판을 설치하고 분석</td>
</tr>
<tr>
<td>정연식(2011)</td>
<td>고령운전자는 25세 이상의 운전자는 야간에 시각적 정보를 얻기 위해서 주간보다 2배의 빛이 요구되며, 75세의 운전자의 경우에는 야간시력이 저하되기 때문에 25배의 빛을 더 필요</td>
</tr>
<tr>
<td>이행구(2008)</td>
<td>안개가 인한 교통사고 위험성이 사회 문제로 대두됨을 언급하면서 안개 교통사고예측모형을 개발함, 시정거리, 안개지속시간외에 주야 구분 요인이 중요한 변수임을 발휘</td>
</tr>
<tr>
<td>이영남(2007)</td>
<td>3년 동안 발생한 교통사망사고를 연구표본으로 하여 기상요인인 운량, 습도, 강수, 풍속 등의 4개 요인과 교통사망사고와의 관련성을 분석한 결과, 강수량, 사고에 가장 큰 영향을 주는 것으로 나타남</td>
</tr>
<tr>
<td>김종만(2007)</td>
<td>기상상태의 악화는 도로, 차량, 운전자 모두에게 큰 부담이 되며 특히 도로상의 안개는 빛을 산란시켜 운전자의 인지능력을 저하시키고, 안개대응 대책으로 도로전광장, 안개방역, 안개위험경보, 차량 탈방지시설, 낮은 조명등, 안개시정 표시와 노속 LED점멸시설의 효과를 분석 및 제안</td>
</tr>
<tr>
<td>임광수(2007)</td>
<td>안개발생 시 시정거리의 감소로 도로선형이나 노면표시 인식이 어려워지며, 노면 습윤상태에서 차량의 정지거리가 길어지고 차량 간 속도차이가 증가하여 추돌사고로 이어짐</td>
</tr>
<tr>
<td>국토교통부</td>
<td>CCTV를 이용하여 안개시정거리의 감소로 도로전광장이나 노면표시 인식이 어려워지며, 노면 습윤상태에서 차량의 정지거리가 길어지고 차량 간 속도차이가 증가하여 추돌사고로 이어짐</td>
</tr>
<tr>
<td>신연식(2001)</td>
<td>신호위반사고와 중앙선 침범사고가 고령층에서 상대적으로 많이 발생되며, 안전운전이행과 안개처리에대한 인식의 차가 아간발생비율이 22.3%, 25.4%로 다른 법규위반의 야간사고율에 비해 높음</td>
</tr>
</tbody>
</table>

요약-6
○ 국외 관련연구

<table>
<thead>
<tr>
<th>저 자</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lana M. Trick(2010)</td>
<td>고령운전자는 밝은 날과 안개낀 악천후 시 시각 기능저하 등으로 사고 위험이 증가</td>
</tr>
<tr>
<td>Lana M. Trick(2010)</td>
<td>고령운전자를 대상으로 밝은 날과 안개낀 악천후를 대상으로 주행 시뮬레이터 실험, 시각 기능저하 등으로 사고위험이 증가</td>
</tr>
<tr>
<td>Rui Ni(2007)</td>
<td>안개낀 도로를 주행시 고령운전자들이 반응시간이 길어지고 정확성도 떨어지는 편</td>
</tr>
<tr>
<td>Rui Ni(2007)</td>
<td>청년층과 고령층을 대상으로 안개낀 도로를 주행하는 시뮬레이션 실험이 수행, 고령운전자들이 반응시간이 길어지고 정확성 저하</td>
</tr>
<tr>
<td>L.Hakamies-Blomqvist (1994)</td>
<td>고령운전자의 야간교통사고가 다른 연령단과 비교하여 적게 발생하나 그 치명정도는 더 높은 것으로 조사</td>
</tr>
<tr>
<td>Staplin,L (1990)</td>
<td>야간 시 곡선구간에서 필요한 차선의 명암대비에 대해 연구하였는데, 고령운전자들은 차선의 광도를 증가시키면 안전운전에 도움</td>
</tr>
<tr>
<td>Cooper(1990)</td>
<td>연령별 악천후 시 교통사고를 분석하였는데, 중년운전자 사고의 44.3%가 빗길과 눈길에서 발생하였으나 65세~74세의 고령운전자는 37.4%, 75세 이상은 31.9%로 낮은 수준은 아님</td>
</tr>
</tbody>
</table>

제3장 모의주행실험

1. 실험목적

○ 본 실험은 야간 및 악천후 시 고령운전자의 노면시인성 저하로 인한 운전 능력 감퇴현상을 알아보기 위하여 자동차안전연구원(경기 화성)의 차량 주행시뮬레이터를 이용한 도로주행 실험이 실시

2. 실험내용 및 방법

○ 피실험자 : 운전경력 3년 이상의 청년운전자와 고령운전자가 각각 10명씩 총 20명
 - 청년운전자의 경우 연령대가 20대로 제한하였으며, 고령운전자는 55세 이상
 - 뇌질환/심장질환으로 병원에 입원하거나 치료받은 이력이 없어야 하며, 색맹, 색약 등 시각기능에 이상이 없고 좌 우 교정시력이 0.5 이상인 신체 건강
요약

한 자

○ 실험장치 : 실험에 사용된 가상주행시험장비는 실제 주행영상과 소음을 재현하는 영상 및 음향시스템을 갖춘 360도 동스크린 형태이며, 자동차의 운동을 구현하는 시험차량과 동역학시스템 (6축 전기식 모션플랫폼 및 Yaw 테이블)을 갖춘 자동차 동역학을 구현하는 자동차 주행시뮬레이

○ 실험설계 : 4가지 기상조건 하에서의 고속도로 주행
- 실험내용에서의 주행험은 사공간적으로 제약이 많고 안전성이 보장되지 않으므로 교통안전공단 주행시뮬레이터를 이용하여 실시

① 독립변수 : 운전자 연령대, 기상조건
 - 연령대 : 청년층(20대 남성운전자), 고령층(55세 이상 남성운전자)
 - 기상조건 : 밝은 날 주간, 밝은 날 야간, 안개낀 날 I 주간, 안개낀 날II 주간
② 종속변수 : 정주행률, 주행속도
 - 정주행률 : 차선이탈여부(차선이탈 횟수, 전체 주행시간에 대한 차선이탈 시간 비율), 차량중심과 차선중심 간 거리
 - 주행시간 : 평균주행속도, 전 구간에 대한 주행속도 편차

○ 피실험자 관리
 - 피실험자에게는 주행험 전 실험내용 및 주의사항을 설명
 - 충분한 시뮬레이터 적응시간을 갖게 하기 위하여 주행코스를 2회씩 탑승하도록 한 후 구두로 적응여부를 확인 (가상 시뮬레이터 특성으로 인한 여지 력움중을 호소하는 피실험자에 대해서는 실험을 중단하도록 조치
 - 실험실시 전에는 약물복용이나 흡연, 커피, 알코올을 복용하지 않도록 하며, 피로가 누적되지 않은 상태에서 실험에 참여할 수 있도록 함

3. 주행험

○ 주행차량은 4차로 중 2차로로 주행, 밝은 날 주간에는 시속 80~100km/h,
야간 주행 시에 60∼80km/h, 안개낀 도로를 주행할 시 40∼50km/h를 유지
○ 주행실험 중에는 운전자의 시각적 각성수준(Workload)에 영향을 미치는 요인(주변 주행차량, 사고발생과 같은 이벤트)이 발생하지 않도록 하기 위하여 주행도로에는 주행실험차량 외에 타 차량이 운행하지 않도록 설계
○ 도로주변에는 별도의 조명시설은 설치되지 않은 상황 하에서 주행실험이 진행
○ 학습효과를 제거할 수 있도록 실험자의 실험순서를 정하였으며 각 실험 조건 하에서 주행한 후에는 25분간의 휴식을 취한 후 주행을 하도록 함

4. 결과분석

(1) 정주행률
○ 차선이탈회수
- 운전자 연령층 및 기상조건에 따라 차선이탈회수는 통계적으로 유의한 차이가 있음(각각 유의수준=0.00)
- 청년운전자 : 기상조건에 따라 통계적으로 유의한 차이가 없음
- 고령운전자 : 밝은 날과 야간은 통계적으로 유의한 차이가 없었으나 밝은 날과 안개낀 날(가시거리 140C, 110C)은 각각 통계적으로 유의한 차이가 있음, 안개낀 날 I과 II는 통계적으로 차이가 없음
- 밝은 날에 청년운전자의 차선이탈회수는 평균 1.78회인 반면 고령운전자는 9.27회로 4.2배 많은 것으로 나타났으며, 야간에는 청년운전자가 1.11회인 반면 고령운전자는 3.09회로 2.9배 많은 것으로 나타남
- 안개낀 날 I과 II에서는 청년운전자의 차선이탈회수는 각각 2.3회와 0.9회 이었으나 고령운전자는 각각 5.45회와 3.18회로 1.3배와 2.5배 많은 것으로 나타남
- 이러한 결과는 고령운전자가 청년운전자에 비해 도로주행 시 기상환경의 영향을 더 많이 받고 있음을 보여주는 것이며, 특히 밝은 날 주간에는 도로주행속도가 높아 청년운전자에 비해 고령운전자가 차선을 유지하기 매우 어려웠던 것을 알 수 있음
○ 차선이탈시간
요약

- 차선이탈시간은 연령층에 따라 통계적으로 유의한 차이가 있으나 기상조건에 따라서는 차이가 없음(유의수준=0.00)

- 청년운전자: 기상조건에 따른 차선이탈시간은 통계적으로 유의한 차이가 없음
- 고령운전자: 밝은 날과 야간은 통계적으로 유의한 차이가 없었으나 밝은 날과 안개낀 날 I, II와는 각각 통계적으로 유의한 차이가 있음(유의수준=0.00). 그러나 안개낀 날 I과 II에서의 차선이탈시간은 차이가 없음

- 밝은 날에 청년운전자의 차선이탈회수는 평균 2.52초인 반면 고령운전자는 19.95초로 6.9배 많은 것으로 나타났으며, 밝은 날 야간에는 청년운전자가 4.1초인 반면 고령운전자는 13.25초로 2.2배 많은 것
- 안개낀 날 I과 II에서는 청년운전자의 차선이탈시간은 각각 3.07초와 7.94초였으나 고령운전자는 각각 5.91초와 7.94초로 0.9배와 1.1배 큰 것으로 나타남

○ 차량중심과 차선중심 간의 거리
- 연령층에 따라 통계적으로 유의한 차이가 있으나 기상조건에 따라서는 차이가 없음(유의수준=0.05)
- 청년운전자: 기상조건에 따른 차량과 차선중심선과의 거리는 통계적으로 유의한 차이가 없음
- 고령운전자: 밝은 날과 야간은 통계적으로 유의한 차이가 없었으나 밝은 날 안개낀 날 I, II와는 각각 통계적으로 유의한 차이가 있으며(유의수준=0.00) 야간과 안개낀 날 I과 II와도 유의한 차이가 있음(유의수준=0.05). 그러나 안개낀 날 I과 II간의 차이는 없는 것으로 나타남
- 밝은 날에 고령자의 중심거리차이는 0.029로 청년운전자의 0.07m의 0.41배 수준으로 나타났으며 야간의 경우도 고령운전자는 0.033m로 청년운전자의 0.089m로 0.37배 수준임
- 안개낀 날 I과 II에서는 고령운전자의 각각 0.10m와 0.012m이었으나 청년운전자는 각각 0.097m와 0.101m로 0.11배와 0.12배 수준임
○ 중심거리 편차
- 연령층에 따라 통계적으로 유의한 차이가 있으나 기상조건에 따라서는 차이가 없음(유의수준=0.05)
- 청년운전자 : 기상조건에 따른 차량과 차선중심선과의 거리는 통계적으로 유의한 차이가 없음
- 고령운전자 : 맑은 날과 야간은 통계적으로 유의한 차이가 없었으나 맑은 날 안개낀 날 I, II와는 각각 통계적으로 유의한 차이가 있으며(유의수준 =0.00) 야간과 안개낀 날 I과 II와도 유의한 차이가 있음(유의수준=0.05).
- 고령운전자 : 맑은 날에 고령자의 중심거리편차는 0.456m로 청년운전자 0.299m의 1.52배 큰 것으로 나타났으며 야간의 경우도 고령운전자는 0.406m로 청년운전자 0.295m로 1.37배 큼
- 안개낀 날 I과 II에서는 고령운전자이 각각 0.311m와 0.314m이었으나 청년운전자는 각각 0.252m와 0.249m로 1.23배와 1.26배 큼

(2) 주행속도
○ 평균 주행속도
- 기상조건별로 운전자의 연령층에 따른 평균주행속도의 차에 대한 T-test를 실시
- 고령운전자의 평균 주행속도는 청년운전자에 비해 비교적 주행속도가 빠른 맑은 날 주간과 야간 주행 시 속도차가 각각 8.8km/h와 6.65km/h 큰 것으로 나타남

○ 주행속도편차
- 연령층 및 기상조건에 따라 주행속도편차는 통계적으로 유의한 차이가 있는 것으로 나타남(유의수준=0.00)(표 4-9).
- 청년운전자 : 기상조건별 주행속도편차는 통계적으로 유의한 차이가 있음
- 고령운전자 : 기상조건별로 주행속도편차는 통계적으로 차이가 있는 것으로
요약

- 청년운전자: 기상조건별 주행속도편차는 통계적으로 유의한 차이가 없음
- 맑은 날에 청년운전자 주행속도편차는 평균 13.4km/h인 반면 고령운전자는 14.6km/h로 0.1배 많은 것으로 나타냈으며, 맑은 날 야간에는 청년운전자가 10.5km/h인 반면 고령운전자는 12.4km/h로 0.2배 많은 것으로 나타남.
- 안개낀 날 I과 II에서는 청년운전자의 주행속도편차는 각각 평균 5.5km/h와 5.3km/h로 고령운전자는 7.2km/h와 6.9m/h의 각각 0.3배 큰 것으로 나타남.

제4장 결론

○ 본 연구에서는 야간 및 악천후 시 고령자의 시인성 감퇴 현상과 이에 따른 운전행태를 알아보기 위하여 차량시뮬레이터를 이용하여 고속도로에서 주행실험을 실시하였음.
- 청년운전자와 고령운전자 각각 12명씩을 대상으로 맑은 날(주간, 야간), 안개낀 날(140C, 110C)에서 고속도로를 주행하도록 하여 정주행률(차선이탈회수, 차선이탈시간, 차량과 차선간의 중심거리, 중심거리 편차)과 주행속도 (주행속도, 주행속도편차) 등에 대하여 비교분석 하였으며, 분석결과 다음과 같은 결과를 얻음.

① 차선이탈회수는 고령운전자가 청년운전자에 비해 기상조건에 따라 각각 1.3배에서 4.2배 많은 것으로 나타남. 특히 주행속도가 높은 밤은 날 주간에는 차이가 가장 컸음. 안개낀 날은 밤에 비해 차선이탈회수 적었고 시야확보가 보다 용이한 안개낀 날 I은 안개낀 날 II나 야간에 비해서도 차선이탈회수가 적음. 이는 시야가 확보된 경우 운전자들은 차선유지에 덜 신경을 쓰기 때문인 것으로 보임.

② 차선이탈시간의 경우 청년운전자는 기상조건에 따라 통계적으로 유한 차이가 없었으나 고령운전자의 경우 밤은 날 주간과 야간에 오히려 차선이탈시간이 길게 나타남. 이러한 현상은 시야가 확보된 경우 운전자들은 차선유지에 덜 신경을 쓰기 때문인 것으로 보이며, 더욱이 이 두 조건하
에서는 차량의 높은 운행속도가 영향을 미친 것으로 판단됨

③ 차량중심간 거리의 경우 청년운전자는 기상조건에 따라 통계적으로 유한 차이가 없었으나, 고령운전자의 경우 밝은 날 주간과 야간에 더 멀게 나타남. 또한 고령운전자는 청년운전자에 비해 오히려 중심간 거리가 짧게 나타나 차선 중심에서 운행하려고 노력하는 것으로 나타남.

④ 중심거리편차의 경우 청년운전자는 기상조건에 따라 통계적으로 유한 차이가 없었으나, 고령운전자의 경우 밝은 날 주간과 야간에 더 크게 나타남. 또한 고령운전자는 청년운전자에 비해 오히려 중심간 거리가 짧게 나타난 것과는 달리 중심거리편차는 고령운전자가 청년운전자에 비해 1.2에서 1.5배 이상 큰 것으로 나타남. 이러한 결과는 청년운전자는 주행차선 중 한 방향으로 치우쳐 주행하고 있으나 큰 흔들림없이 주행을 유지하는 반면, 고령운전자는 차선 중심을 유지하기 위한 부하를 많이 받고 있는 것으로 판단됨.

⑤ 주행속도의 경우 기상조건별로 일정한 속도를 유지하여 주행하도록 하였기 때문에 기상조건별 속도차이가 당연히 나타남. 그러나 각 기상조건별로 청년운전자가 고령운전자에 비해 운행속도가 높았음. 청년운전자는 최대속도를 유지하려는 반면 고령운전자는 최저속도를 유지하려는 경향이 있는 것으로 나타났는데 밝은 날 주간과 야간에 두 그룹간의 속도차는 통계적으로 유한 차이가 있었으나 안개상황에서는 통계적으로 유의한 차이는 없었음.

⑥ 주행속도편차의 경우, 운전자 연령층에 따라, 기상조건에 따라 모두 통계적으로 유한 차이가 있었음. 그러나 안개란 두 상황 간에는 차이가 없음 모든 운전자가 밝은 날 주간과 야간이 안개진 날에 비해 편차가 적었으며, 고령운전자는 청년운전자에 비해 속도편차가 큰 것으로 나타남.

○ 위와 같은 결과로 볼 때 운전자들은 시야가 확보되지 않는 야간이나 안개
요 약

상황에서는 많은 날 주간에 비해 차선을 유지하려는 정주행률이 오히려 높게 나타남. 특히 고령운전자의 경우 이러한 현상은 더욱 두드러지게 나타났는데 이는 고령운전자가 시야가 확보되지 않아 상당한 정신적 부하를 안고 운전하는 것으로 나타남.

○ 따라서 야간이나 악천후 상황에서 운전자의 시야 및 노면시인성을 높여주기 위한 개선들이 필요함. 현재는 악천후 시 전면시인성을 높이기 위해 차량 전면유리창에 주행방향의 상황을 디스플레이 해주는 HUD가 개발되었으며, 악천후 시 시야폭을 넓혀주기 위한 고령운전자용 전조등이 개발되기도 하였음.

○ 또한 노면시인성을 개선하기 위해 비오는 밤에도 잘 보이는 '울퉁불퉁' 차선비오는 밤에도 잘 보이는 '울퉁불퉁' 차선을 개발하는 등 다양한 재질을 개발하여 시인성 확보노력을 추진 중임. 운전자의 시인성이 확보는 교통사고 예방에 매우 중요한 요소이므로 이에 대한 연구개발이 더욱 필요한 상황임.
제1장 서 론

제1절 연구배경
제2절 연구목적
제3절 연구내용 및 방법
제4절 연구수행절차
제1장 서 론

제1절 연구배경

최근 국지성 호우 및 갑작스러운 기상이변으로 인해 도로주행 시 운전자의 노면시인성 점어 현상이 자주 발생하여 안전이 문제가 되고 있다. 특히 비오는 날과 눈오는 날의 경우 도로 표면마찰력이 감소하며 차량의 제어가 어렵게 된다. 특히 장마철 폭우가 오는 날과 같이 자동차가 물에 닿인 노상을 고속으로 주행할 때 감자가 조종능력을 잃는 현상이 나타난다. 최근에는 가을과 겨울, 낮은 따뜻하고 밤에는 추위 일교차가 심하게 발생하고 있어 새벽과 약간에 안개가 많이 발생하고 있어 운전자는 시야를 확보하기 어렵다.

(그림 1-1) 맑은 날과 비오는 날의 노면시인성 비교

최근 5년간(2008-2012년) 기상상태별 도로교통사고 점유율을 보면, 비가 오거나 흐린 날의 교통사고는 2008년 이후 지속적으로 증가하는 것으로 나타났으며, 맑은 날의 교통사고 치사율이 1.55인대 비해 안개 진 날은 4.89로 3.15배 높은 것으로 나타났다. 또한 흐린 날과 비오는 날의 치사율도 각각 2.37과 1.85로 맑은 날에
제1장 서론

비해 1.53배와 1.19배 높았다.

또한 야간에는 주간과 비해 운전자의 사인성이 낮아 차량의 주행 안전성이 크게 감소하기 때문에 교통사고의 위험성 또한 매우 높아진다. 최근 5년간 교통사고 현황을 보면 야간 교통사고 점유율은 2007년 49.89%에서 2011년 48.50%로 감소하였으나 야간사고 치사율은 주간사고와 비교하여 여전히 높은 수준이다.

특히 고령운전자의 경우 신체가 노화되면서 시인성이 급격히 저하되고, 더욱이 녹내장, 백내장, 당뇨, 각막의 퇴화 등과 같은 노인성 질환이 많이 발생하여 시각적 기능의 문제가 발생하게 된다. 특히 야간이나 악천 후 시 노면시인성 결여 현상에 더욱 민감하게 반응하여 교통사고를 더욱 증가시킬 수 있어 고령운전자의 시인성을 증진할 수 있는 방안이 마련되어야 하며, 이를 위한 기초연구가 절실히 필요하다.

제2절 연구목적

야간 및 악천 상황에서 청년운전자와 고령운전자의 운전행태를 비교·분석하여 고령운전자의 시인성 향상 방안을 모색하기 위한 기초자료를 제공하는데 목적이 있다.

제3절 연구내용 및 방법

1. 연구내용

본 연구에서는 야간 및 악천 후 고령운전자의 시인성 저하현상 및 그에 따른 문제점, 개선 방안 등을 도출하고자 다음과 같은 연구를 진행하였다.

○ 고령운전자 현황 및 교통사고현황
○ 시뮬레이션을 실험을 위한 시나리오 구성 및 데이터 수집을 위한 프로그램 구축
○ 기후조건에 따른 주행실험
○ 야간 및 안개상황에서의 청년 및 고령운전자의 주행능력 및 운전행태 실험
○ 고령운전자의 시각특성을 고려한 노면시인성 제고방안을 위한 시사점 도출

2. 연구방법

본 연구에서는 문헌조사 등을 통하여 고령운전자 현황 및 고령자 교통사고현황을 조사하였으며, 고령운전자의 신체적, 인지적 능력을 조사하였다. 또한 고령 운전자의 시각적, 인지적, 신체적 능력 감퇴와 교통사고, 운전능력과의 관계 등을 분석하였다.

이러한 선행연구 등을 바탕으로 야간 및 안개상황과 같이 시인성이 크게 감소된 상황에서의 운전능력을 평가하기 위한 모의 주행실험을 설계를 위한 시나리오 구성 및 데이터 수집을 위한 프로그램을 구축하였다.

또한 시인성 저하에 따른 고령운전자의 운전능력 감퇴현상을 알아보기 위하여 고령운전자와 청년운전자 간 운전능력 차이를 분석하였다.
○ 문헌 조사 : 고령자운전자 현황 및 고령자 교통사고 현황, 고령자 신체적 능력 감퇴에 따른 운전능력 저하 및 교통사고 발생 관련 연구
○ 시나리오 구성 : 시뮬레이션을 실험을 위한 시나리오 구성 및 데이터 수집
○ 모의실험 : 노면시인성과 주행능력 운전행태 실험

제4절 연구수행절차

본 연구에서는 야간 및 안개 상황에서 고령운전자의 운전행태를 알보기 위하여 먼저 65세 이상 고령자의 신체적, 인지적 특성, 교통사고 특성 등에 관한 선행 연구를 고찰하였다. 또한 차량시뮬레이터를 활용하여 야간 및 안개 상황에서의 청년 운전자와 고령운전자에 대한 모의주행실험을 실시하였으며, 조사결과를 토대로 고령운전자의 특성을 분석하였다.
제1장 서론

연구의 배경 및 목적 설정

관련문헌검토

실험계획(모의주행실험 설계)

모의 주행환경 구성
시나리오 선정
피실험자 선정 및 배치

모의주행실험

실험결과 분석

결과도출

〈그림 1-2〉 연구수행절차
제2장 선행연구

제1절 고령운전자의 특성
제2절 고령운전자와 교통안전
제2장 선행연구

제1절 고령운전자의 특성

1. 고령운전자의 정의

우리나라의 교통사고 통계를 담당하고 있는 도로교통공단에서는 교통사고 제1당사자의 연령이 만 65세 이상인 경우를 고령층 운전자 사고로 규정하고 있으며, 노인복지측면에서 노인(고령자)이란 “신체적ㆍ정신적 측면에서의 상실현상을 겪고 있는 65세 이상인 사람”이라고 정의하고 있다.

우리나라 법률 및 통계조사에서 적용하고 있는 고령자에 대한 연령기준을 살펴보면 적용기준이 다소 상이하다. 고용상 연령차별금지 및 고령자 고용촉진에 관한 법률에서는 55세를 적용하고 있으며 국민연금법에서 노령연금의 수급권자를 60세로 하고 있으며 노인복지법과 도로교통법에서는 65세 이상으로 정하고 있다.

〈표 2-1〉 우리나라 법률 및 통계조사에서 적용하는 고령자 기준

<table>
<thead>
<tr>
<th>법률 및 통계조사명</th>
<th>적용기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>도로교통법</td>
<td>65세</td>
</tr>
<tr>
<td>노인복지법</td>
<td>65세</td>
</tr>
<tr>
<td>국민연금법</td>
<td>60세</td>
</tr>
<tr>
<td>고용상 연령차별금지 및 고령자 고용촉진에 관한 법률</td>
<td>55세</td>
</tr>
<tr>
<td>인구주택 총 조사</td>
<td>60세</td>
</tr>
<tr>
<td>수도권 가구통행 실태조사</td>
<td>65세</td>
</tr>
</tbody>
</table>

자료: 고령운전자의 교통사고 특성분석 및 사고예방대책 연구(2012, 도로교통공단)

국제노인학회에서는 노인을 “인간의 노령화 과정에서 나타나는 생리적, 육체적, 심리적, 정서적, 환경적 및 행동의 변화가 상호작용한 복합형태에 있는 사람”으로 정의하였으며, 다음과 같은 의학적인 특징이 있다고 하였다.
제2장 선행연구

① 환경의 변화에 적절히 적응할 수 있는 자체조직에 결함이 있는 사람
② 자신을 통합하려는 능력이 감퇴되어 가는 시기에는 있는 사람
③ 인체의 기관, 조직, 기능이 쇠퇴하고 있는 시기에 있는 사람
④ 생활에 대한 적응력이 결손 되어 가고 있는 사람
⑤ 조직 및 기능저하로 작용 감퇴현상이 있는 사람

① 추상적인 측면: 생리적 및 생물학적인 면에서 쇠퇴기에 있는 사람
② 심리적인 측면: 정신기능과 성격이 변화되고 있는 사람
③ 사회적인 측면: 지위와 역할이 상실된 사람
④ 연령의 측면: 65세 이상의 사람

즉, 노인(고령자)이란 인간의 노령화 과정에서 나타나는 생리적, 육체적, 심리적, 정서적, 환경적 및 행동의 변화가 상호작용하는 복합형태의 과정에 있는 65세 이상의 사람이라 할 수 있어 교통에서는 일반적으로 정의하고 있는 고령운전자와 동일하다고 볼 수 있다.

2. 고령운전자의 특성

2.1 고령운전자의 신체적 특성

고령자들은 시각, 청각, 지각 등의 감각에 있어서 청·장년층에 비하여 능력이 감소되는 현상을 보인다. 이러한 감각 기능의 저하는 노년층 운전자의 적절한 반응저하 및 교통사고 가능성을 높게 한다. 일반적으로 50세를 넘기면서 시각적인 쇠퇴가 의미있게 발생되는 것으로 보고되고 있다.

(1) 시각

도로를 이용하는 운전자나 보행자는 시각을 통하여 많은 정보를 얻는다. 도로의 구조, 교통류의 제어 장치, 주변의 차량과 보행자, 그리고 여리 가지 잠재적 위험물도 인지하도록 한다. 그러나 노년층이 되면서 녹내장, 백내장, 당뇨, 각막의
퇴화 등으로 시각적 기능이 저하된다.

① 식별능력 저하(Reduction in acuity)

식별능력이란 운전자가 대비(contrast)가 큰 물체를 식별하는 능력을 말함. 인간은 고령화됨에 따라 수정체가 황색화(yellowing)되고 수정체가 두꺼워져(thickening) 색을 식별하는 기능이 저하됨. 또한 망막(retina)에 도달하는 빛의 양을 감소시켜 물체 식별 능력을 저하시킴.

정적 식별능력(Static visual acuity)은 정지된 물체에 대한 식별능력으로 40~50세가 되면 감퇴하기 시작함(Owsley etc., 1991). 동적 식별능력(Dynamic visual acuity)은 움직이는 물체에 대한 식별능력으로 연령이 증가함에 따라 감소하는데, 70세에 이르면 약 60%가 감소함. 운전 중 도로의 표지판의 정보, 보행 중 교통안내문이나 표지판 등을 판별하는 능력이 이에 해당됨.

② 대비감도 감소(Reduction in contrast sensitivity)

대비감도란 대비의 차가 작은 물체를 식별하는 능력을 말함. 주로 배경으로부터 물체를 식별하는 능력으로 희미한 차선을 식별하거나 반사물질 처리가 되지 않은 연석 혹은 중앙분리대의 가장자리를 식별하는 것, 혹은 어두운 상태에서 다른 차량을 인식하는 등의 능력을 말함. 시각적 대비감도는 20세부터 점차 감소하며 40~50대에 가장 많이 감소함.

③ 시야 폭의 감소(Reduction in visual field)

시야폭이란 머리와 눈을 움직이지 않고 볼 수 있는 범위를 말하며, 보통 주시선에 대한 각도로 표시함. 만일 표지판, 신호등, 차량, 보행자 등의 정보가 운전자의 시야 내에 존재하지 않으면 전혀 감지할 수 없음. 일반적으로 시야폭은 연령이 증가하면서 감소하기 때문에 노년층 운전자나 보행자의 경우 사고의 위험에 더욱 노출되어 있음.

④ 시각적 주의력 범위의 감소(Reduction in the area of visual attention)

시각적 주의력이란 운전자가 시야 내에서 볼 수 있는 상황 중, 필요한 정보를
선별할 수 있는 능력으로 지속적으로 변화하는 교통상황에 신속히 대처할 수 있는 능력이 이에 해당됨. 시각 유호폭(useful field of view), 시야 기능폭(functional field of view), 혹은 주의 집중폭(attention window)은 전체 시야폭라 할 수 있음.

생리학적으로 물체를 감지할 수 있으나, 연령층이 높아지면 시각적으로는 감지했으나 정보를 뇌에서 처리하는 과정에서 제약을 받아 정보를 인지하지 못하여 사고를 유발시키게 됨.

⑤ 눈부심에 대한 민감도 증가(Increased sensitivity to glare)

눈부심에 대한 민감도란 시야 내의 휘도(Brightness)가 눈이 순응할 수 있는 것보다 훨씬 밝기 때문에 생기는 현상으로 물체가나 불편함. 성가신 느낌이 들어 시각적인 작업에 있어서 가시도(visibility)를 소실하게 되어 작업수행 능력을 저하시키는 것을 말함. 특히 주간에 햇빛이 강할 때, 야간에 마주오는 차량의 헤드라이트 빛이 비출 때는 운전자와 눈부심에 대한 민감도가 증가하여 물체를 인식하는 능력이 저하됨. 눈부심에 대한 민감도는 20세에 비해서 60세에 약 3배로 증가하며 주간보다는 야간에 눈부심 현상으로 인한 민감도 회복시간이 오래 걸림.

⑥ 암순응 시간의 증가(Increased time to dark adaptation)

암순응이란 밝은 곳에서 어두운 곳으로 들어갔을 때, 보이지 않던 것이 시간이 지남에 따라 차차 보이는 현상을 말함. 운전자의 경우 차량이 터널로 진입하거나 야간 운전 시 상업지역에서 비상업지역으로 진입하는 상황에서 암순응 시간이 증가하게 되어 교통사고 위험도 증가함. 일반적으로 연령이 증가함에 따라 암순응 시간도 증가함.

(2) 청각

① 정상적인 대화보다 5~10배인 90dB 이상의 음만 들을 수 있는 사람을 청각장애라 하는데, 65세~74세의 노인의 23%, 75세 이상의 40%가 청각장애가 있음.

② 특히 고령화될수록 고음에 대해 청력이 현저히 저하되며, 주변에 소음이 심한 경우 음을 식별하기 어렵게 됨. 고령보험자의 차량의 경적음을 듣지 못하는 사례가 많음.
(3) 체력
① 악력(Grip strength)은 20대를 정점으로 50대까지 서서히 감소하며, 50대 이후는 급격히 감소함
② 발목과 무릎에서의 굽곡이나 신전을 일으키는 힘도 20~30대에 비하여 70대에는 1.5~2배 감소함
③ 운동의 정확성 및 조정능력은 60세가 지나면 감소하게 됨
④ 고령자는 운동을 통해 근력 및 신체 기능을 증대 시킬 수 있음

2.2 고령운전자의 정신적 특징

사람들은 연령이 증가함에 따라서 주위로부터 입력된 정보를 처리하거나 기억하는 능력, 주어진 정보에 집중하는 능력 등이 감소한다. 이러한 주의력 및 판단력의 감소는 도로 상의 노년층을 매우 위험한 상황에 처하게 한다.

(1) 인지반응 시간(Perception–reaction time: PRT)

인지반응이란 입력된 정보에 대한 반응시간으로 고령화됨에 따라 입력된 정보를 두뇌에서 처리하는 시간이 길어져 인지반응 시간이 증가하게 됨. 예를 들어 고령운전자의 경우 운전상황이 복잡하면 도로구조와 교통조건을 인지하여 방향조정이나 브레이크 작동 등과 같은 차량제어에 필요한 시간이 급격히 증가하여 반응 시간이 길어짐

(2) 활동 기억력(Working memory)

활동 기억력은 입력된 정보를 저장, 변경, 기억하는 능력을 말함. 예를 들어 운전 중 습득된 지식 교통량이 많은 복잡한 운전상황 하에서 활용하거나 운전 중 연속적인 정보를 실제운전에 활용하고 가변 표지판에서 제공하는 정보들을 기억하고 종합하여 이해하는 능력을 말함. 그러나 활동 기억력은 고령화됨에 따라 다음과 같은 장애를 가져오게 됨
① 기억력 장애 : 정보를 인식하고 읽는 데 어려움
② 기각 장애 : 감각기관의 정보를 받아들이고 주위하고 분별하는데 어려움
제2장 선행연구

③ 문제 해결력 장애: 문제를 인식하고, 해결방안을 선택하고 결과를 평가하는데 있어서의 장애

④ 개념화의 장애: 논리, 일반화, 분류, 원인과 결과, 추상적인 개념 이해에 대한 장애

⑤ 언어 장애: 언어구사에 있어서의 장애

(3) 선택적 주의(Selective Attention)

선택적 주의란 여러 가지 자극이 주어져도 하나의 자극에만 집중하는 능력으로 연속적으로 제공되는 정보들 중 중요한 정보에 집중하는 능력을 말함. 예를 들어 복잡한 교차로에서 안전표지판을 감지하는 능력이나 도로주행 중 횡단하는 보행자 발견하는 것 등이 이에 해당됨. 선택적 주의력 역시 고령화됨에 따라 감소함

(4) 분할된 주의 (Divided Attention)

분할된 주의력이란 동시에 두 가지 자극에 집중할 수 있는 능력으로 여러 가지 일을 동시에 수행하고 다양한 정보를 처리하는 능력을 말함. 이 또한 연령이 고령화됨에 따라 급격히 감소함

<표 2-2>는 고령운전자에 대한 신체적, 인지적 특성을 정리한 것이다.
표 2-2 고령운전자의 신체적, 인지적 특성 종합

<table>
<thead>
<tr>
<th>구분</th>
<th>특성</th>
</tr>
</thead>
</table>
| 신체능력 저하 (시각, 청각, 상·하지 능력) | ・자동차 운전에 필요한 정보의 약 90%정도는 시각을 통해 입수
・정지시각 평균치는 청장년에 비해 20%저하
・안구조절능력 저하
・동체시각이 0.1정도까지 저하됨
・근근조절능력, 섬광 적응력, 시야범위 저하, 원거리 시각저하
・조도와 야간시각 저하
・원거리 글자 및 표지판 판독능력 저하
・시각 저하로 인한 정지시력 평균치는 청장년에 비해 20%저하
・안구조절능력 저하
・원근거리가 0.1정도까지 저하됨
・조도와 야간시력 저하
・시각 저하로 인한 원거리 글자 및 표지판 판독능력 저하
・65세 이상부터 고음역을 중심으로 청력 약 30% 손실발생
・상·하지능력은 청년층 대비 각근력 50%, 지구력 33%, 평형 및 민첩력 33%, 산소섭취량 66%로 저하됨 |
| 반응능력 저하 (판단처리 및 인지반응시간 지연) | ・반사적 동작 반응시간이 젊은 층에 비해 약 30% 증대
・핸들 브레이크 동작 능력 저하
・운전자 중 95%가 1.6초의 인지반응시간을 필요로 함
・2~3개의 연속적 행동 시 젊은 층보다 20% 정도 느리게 반응함
・속도변화 탐지능력, 공간구성 능력 저하 |
| 인지적 저하 (색채, 명도대비, 정보처리 저하) | ・야간주행의 고령운전자에게 필요한 차선의 명암대비는 청장년 층보다 30%이상 높음
・고령운전자는 젊은 층에 비해 평균 2.1배의 명도대비를 요구함
・문의를 통한 차량사태 시 젊은 층에 비해 2.5배의 휴대전화 응답률 요구함
・고령운전자의 무신호교차로 통과 시 젊은 층에 비해 약 20% 길어짐
・합류구간에서의 고령운전자는 젊은 층에 비해 약 50% 길어짐
・정보처리, 주의능력 및 단기기억 저하 |
| 심리적 위축 (운전기 오인 양보 받으려는 심리) | ・운전포기요인으로 시각저하, 심리적 위축요인이 작용함
・교통환경 적응력 저하
・양보 받으려는 심리가 크며, 자신의 부주의를 당연시함 |

자료: 심은석(2009), 고령운전자 인적요인 교통사고 피해손상에 미치는 실증연구
3. 고령인구 및 고령운전자 추이

고령인구는 2001년 3,578천명에서 2012년 5,889천명으로 64.59%가 증가하여 연평균 5.8% 추세로 늘어났다. 이에 반해 같은 기간 동안의 총인구 연 증가율은 0.5% 늘었다. 이에 따라 65세 이상의 고령운전자 비율도 2001년 이후 연평균 15.5%가 증가하여 2012년 기준으로 1,451천명에 이르렀다. 이처럼 우리나라의 고령인구는 최근 10년간 크게 증가하고 있으며, 전체 인구증가추세에 비해 가파른 증가추세를 나타내고 있다. 이러한 현상은 의학기술의 발전에 따른 평균수명의 증가, 생활 및 주거환경개선 등 사회복지 환경개선에 따른 것으로 보인다.

통계청이 발표한 「한국의 사회동향 2013」에 따르면 65세 이상 고령인구는 2000년 당시 7% 수준이었으나 2005년 8.9%로 늘었고 2010년에는 10.9%로 상승했다. 이는 추세로 보면 고령인구는 2020년 15.7%, 2040년 32.3%로 10명 중 3명 이상이 고령자일 것으로 추정되고 있다. 2010년 기준으로 우리나라의 고령화율은 주요 선진국에 비해 다소 낮은 수준이나 2040년이 되면 일본 다음으로 높아질 것으로 전망되고 있다. 또한 현재까지의 연령별 운전면허소지자 추세를 보면 젊은 연령층의 운전면허 소지자수는 상대적으로 줄어들고 65세 이상 고령운전자는 지속적으로 늘어날 것으로 예상되고 있다.

![그림 2-1] 우리나라 인구연령 구조
자료 : 안전행정부, 「주민등록인구통계」, 각 년도.
<table>
<thead>
<tr>
<th>연도</th>
<th>총인구(명)</th>
<th>고령인구(명)</th>
<th>고령운전자 수(명)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>47,357,362</td>
<td>3,578,370</td>
<td>362,156</td>
</tr>
<tr>
<td>2002</td>
<td>47,622,179</td>
<td>3,772,075</td>
<td>435,401</td>
</tr>
<tr>
<td>2003</td>
<td>47,859,311</td>
<td>3,968,118</td>
<td>517,213</td>
</tr>
<tr>
<td>2004</td>
<td>48,089,415</td>
<td>4,165,974</td>
<td>610,759</td>
</tr>
<tr>
<td>2005</td>
<td>48,138,077</td>
<td>4,366,642</td>
<td>705,414</td>
</tr>
<tr>
<td>2006</td>
<td>48,371,946</td>
<td>4,592,367</td>
<td>813,236</td>
</tr>
<tr>
<td>2007</td>
<td>48,597,652</td>
<td>4,827,514</td>
<td>950,695</td>
</tr>
<tr>
<td>2008</td>
<td>48,948,698</td>
<td>5,052,155</td>
<td>1,069,774</td>
</tr>
<tr>
<td>2009</td>
<td>49,182,058</td>
<td>5,255,835</td>
<td>1,184,941</td>
</tr>
<tr>
<td>2010</td>
<td>49,410,366</td>
<td>5,452,490</td>
<td>1,299,913</td>
</tr>
<tr>
<td>2011</td>
<td>49,779,440</td>
<td>5,655,990</td>
<td>1,451,437</td>
</tr>
<tr>
<td>2012</td>
<td>50,004,441</td>
<td>5,889,675</td>
<td>-</td>
</tr>
</tbody>
</table>

자료: 통계청, 도로교통공단

 표 2-3 연도별 고령인구 및 고령운전자 현황

그림 2-2 고령인구 및 고령운전자 추이
제2절 고령운전자와 교통안전

1. 고령운전자 교통사고 특성

고령인구의 증가로 65세 이상의 고령운전자도 증가하고 있으며 지난 10년 동안의 교통사고 통계를 살펴보면 교통사고건수 및 사망자는 감소추세이지만 고령 운전자 교통사고는 증가하고 있다.

<table>
<thead>
<tr>
<th>연도</th>
<th>고령운전자 사고 발생건수(건)</th>
<th>고령운전자 사고 사망자수(명)</th>
<th>치사율</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>3,768</td>
<td>233</td>
<td>6.2</td>
</tr>
<tr>
<td>2002</td>
<td>3,810</td>
<td>258</td>
<td>6.8</td>
</tr>
<tr>
<td>2003</td>
<td>4,562</td>
<td>306</td>
<td>6.7</td>
</tr>
<tr>
<td>2004</td>
<td>5,184</td>
<td>390</td>
<td>7.5</td>
</tr>
<tr>
<td>2005</td>
<td>6,111</td>
<td>414</td>
<td>6.8</td>
</tr>
<tr>
<td>2006</td>
<td>7,131</td>
<td>473</td>
<td>6.6</td>
</tr>
<tr>
<td>2007</td>
<td>8,326</td>
<td>514</td>
<td>6.2</td>
</tr>
<tr>
<td>2008</td>
<td>10,132</td>
<td>559</td>
<td>5.5</td>
</tr>
<tr>
<td>2009</td>
<td>11,974</td>
<td>585</td>
<td>4.9</td>
</tr>
<tr>
<td>2010</td>
<td>12,603</td>
<td>546</td>
<td>4.3</td>
</tr>
<tr>
<td>2011</td>
<td>13,583</td>
<td>605</td>
<td>4.5</td>
</tr>
<tr>
<td>2012</td>
<td>15,176</td>
<td>718</td>
<td>4.7</td>
</tr>
</tbody>
</table>

* 치사율 = 사망자수/(교통사고 발생건수×100)
자료 : TAAS 시스템(도로교통공단)
법규위반내용별 고령운전자 교통사고 발생통계(2012)를 보면 안전운전불이행에 의한 사고가 52.2%, 신호위반 13.3%, 안전거리미확보 9.4%, 교차로 통행범법위반 7.1%, 중앙선침범 6.8%로 전체 교통사고와 비교해보면 고령운전자사고가 중앙선 침범과 신호위반, 교차로 통행범법위반, 직진 및 우회전 차량의 통행방해에 의한 사고가 상대적으로 많이 발생하는 것으로 나타났다. 고령운전자 교통사고는 28.5%가 야간에 발생되는데, 특히 보행자 보호의무 위반으로 인한 사고는 30%이 상이 야간에 발생하였다. 〈표 2-5〉는 2012년도 법규위반별 고령운전자 교통사고 발생현황을 나타낸 것이다.

〈표 2-5〉 법규위반내용별 고령운전자 교통사고발생 현황(2012년)

<table>
<thead>
<tr>
<th>구분</th>
<th>발생건수(건)</th>
<th>주간발생건수(건)</th>
<th>야간발생건수(건)</th>
</tr>
</thead>
<tbody>
<tr>
<td>계</td>
<td>15,176</td>
<td>10,847</td>
<td>4,329</td>
</tr>
<tr>
<td>중앙선 침범</td>
<td>1,039</td>
<td>779</td>
<td>260</td>
</tr>
<tr>
<td>신호위반</td>
<td>2,014</td>
<td>1,377</td>
<td>637</td>
</tr>
<tr>
<td>안전거리 미확보</td>
<td>1,420</td>
<td>1,041</td>
<td>379</td>
</tr>
<tr>
<td>안전운전 의무 불이행</td>
<td>7,919</td>
<td>5,568</td>
<td>2,351</td>
</tr>
<tr>
<td>교차로 통행범법 위반</td>
<td>1,079</td>
<td>821</td>
<td>258</td>
</tr>
<tr>
<td>보행자 보호의무 위반</td>
<td>439</td>
<td>287</td>
<td>152</td>
</tr>
<tr>
<td>직진 및 우회전 차량의 통행방해</td>
<td>517</td>
<td>410</td>
<td>107</td>
</tr>
<tr>
<td>기타</td>
<td>749</td>
<td>564</td>
<td>185</td>
</tr>
</tbody>
</table>

자료: TAAS 시스템(도로교통공단)
고령운전자의 도로선형별 교통사고를 보면, 직선로에서 91.1%인 13,823건이 발생하였다. 특히 고령운전자는 곡선부 도로에서의 사고가 7.8%인 1,185건으로 전체 평균 7.1%보다 약간 높았다.

<table>
<thead>
<tr>
<th>구분</th>
<th>고령운전자 발생건수비율(%)</th>
<th>전체운전자 발생건수비율(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>곡선부 도로</td>
<td>7.8</td>
<td>7.1</td>
</tr>
<tr>
<td>직선부 도로</td>
<td>91.1</td>
<td>91.7</td>
</tr>
<tr>
<td>기타 도로</td>
<td>1.1</td>
<td>1.1</td>
</tr>
</tbody>
</table>

자료: TAAS 시스템(도로교통공단)

2. 기상상태별 교통사고 현황

최근 5년간('08~'12년) 교통사고는 총 1,120,057건이며, 기상상태별로는 맑은 날이 942,254건(8.1%), 비오는 날 98,146건(8.8%), 흐린 날 58,746건(5.2%), 눈오는 날 12,329건(1.1%), 기타/불명 6,185건(0.6%), 안개가 난 날 2,397건(0.2%) 순으로 많이
발생하였다.

특히 사망사고는 5 년간 총 26,494 건이 발생하였는데, 밖은 날이 21,053 건으로 83%, 비오는 날 2,748 건, 흐린 날 2,107 건, 눈오는 날 282 건, 안개낀 날 206 건, 기타 98 건 순으로 많이 발생하였다(표 2-7).

표 2-7 최근 5년간 기상별 교통사고 발생현황

<table>
<thead>
<tr>
<th>구분</th>
<th>발생건수</th>
<th>사망사고</th>
<th>사망자수</th>
<th>구분</th>
<th>발생건수</th>
<th>사망사고</th>
<th>사망자수</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>합계</td>
<td>215,822</td>
<td>5,558</td>
<td>2008</td>
<td>합계</td>
<td>221,711</td>
<td>5,011</td>
</tr>
<tr>
<td></td>
<td>맑음</td>
<td>186,143</td>
<td>4,516</td>
<td>2009</td>
<td>합계</td>
<td>184,835</td>
<td>4,390</td>
</tr>
<tr>
<td></td>
<td>흐림</td>
<td>10,384</td>
<td>425</td>
<td>2009</td>
<td>흐림</td>
<td>12,349</td>
<td>410</td>
</tr>
<tr>
<td></td>
<td>비</td>
<td>15,920</td>
<td>425</td>
<td>2009</td>
<td>비</td>
<td>20,704</td>
<td>573</td>
</tr>
<tr>
<td></td>
<td>안개</td>
<td>569</td>
<td>55</td>
<td>2009</td>
<td>안개</td>
<td>369</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>눈</td>
<td>1,773</td>
<td>48</td>
<td>2009</td>
<td>눈</td>
<td>1,913</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>기타</td>
<td>1,033</td>
<td>17</td>
<td>2009</td>
<td>기타</td>
<td>1,541</td>
<td>24</td>
</tr>
<tr>
<td>2009</td>
<td>합계</td>
<td>231,990</td>
<td>5,235</td>
<td>2010</td>
<td>합계</td>
<td>200,507</td>
<td>5,165</td>
</tr>
<tr>
<td></td>
<td>맑음</td>
<td>198,586</td>
<td>4,494</td>
<td>2010</td>
<td>합계</td>
<td>186,840</td>
<td>4,067</td>
</tr>
<tr>
<td></td>
<td>흐림</td>
<td>11,128</td>
<td>395</td>
<td>2010</td>
<td>흐림</td>
<td>10,850</td>
<td>392</td>
</tr>
<tr>
<td></td>
<td>비</td>
<td>18,766</td>
<td>527</td>
<td>2010</td>
<td>비</td>
<td>21,460</td>
<td>587</td>
</tr>
<tr>
<td></td>
<td>안개</td>
<td>545</td>
<td>51</td>
<td>2010</td>
<td>안개</td>
<td>316</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>눈</td>
<td>2,002</td>
<td>48</td>
<td>2010</td>
<td>눈</td>
<td>2,774</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>기타</td>
<td>963</td>
<td>10</td>
<td>2010</td>
<td>기타</td>
<td>1,416</td>
<td>27</td>
</tr>
<tr>
<td>2010</td>
<td>합계</td>
<td>226,878</td>
<td>5,355</td>
<td>2011</td>
<td>합계</td>
<td>1,120,057</td>
<td>26,494</td>
</tr>
<tr>
<td></td>
<td>맑음</td>
<td>185,850</td>
<td>4,046</td>
<td>2011</td>
<td>맑음</td>
<td>942,254</td>
<td>21,053</td>
</tr>
<tr>
<td></td>
<td>흐림</td>
<td>14,035</td>
<td>485</td>
<td>2011</td>
<td>흐림</td>
<td>58,746</td>
<td>2,107</td>
</tr>
<tr>
<td></td>
<td>비</td>
<td>21,296</td>
<td>564</td>
<td>2011</td>
<td>비</td>
<td>98,146</td>
<td>2,748</td>
</tr>
<tr>
<td></td>
<td>안개</td>
<td>598</td>
<td>37</td>
<td>2011</td>
<td>안개</td>
<td>2,397</td>
<td>206</td>
</tr>
<tr>
<td></td>
<td>눈</td>
<td>3,867</td>
<td>83</td>
<td>2011</td>
<td>눈</td>
<td>12,329</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>기타</td>
<td>1,232</td>
<td>20</td>
<td>2011</td>
<td>기타</td>
<td>6,185</td>
<td>98</td>
</tr>
</tbody>
</table>

자료: TAAS 시스템(도로교통공단)

또한 최근 5년간(08 ~ 12년) 고령운전자에 의해 발생한 교통사고는 총 292,856 건이며, 기상상태별로는 밖은 날이 248,762 건, 비오는 날 23,462 건, 흐린 날 14,948 건, 눈오는 날 3,232 건, 기타/불명 1,505 건, 안개낀 날 947 건, 기타 순으로 많이 발생하였고, 사망사고는 5년간 총 17,709 건이 발생하였는데, 밖은 날이 14,271 건으로 83%, 비오는 날 1,724 건, 흐린 날 1,320 건, 눈오는 날 184 건, 안개낀 날 139 건, 기타 71 건 순으로 많이 발생하였다(표 2-8).
제2장 선행연구

<table>
<thead>
<tr>
<th>구분</th>
<th>발생건수</th>
<th>사망사고</th>
<th>사망자수</th>
<th>구분</th>
<th>발생건수</th>
<th>사망사고</th>
<th>사망자수</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>합계 52,388</td>
<td>3,553</td>
<td>3,844</td>
<td>2011</td>
<td>합계 59,188</td>
<td>3,381</td>
<td>3,546</td>
</tr>
<tr>
<td>맑음</td>
<td>45,561</td>
<td>2,897</td>
<td>3,104</td>
<td>맑음</td>
<td>49,783</td>
<td>2,696</td>
<td>2,806</td>
</tr>
<tr>
<td>흐림</td>
<td>2,584</td>
<td>262</td>
<td>282</td>
<td>흐림</td>
<td>3,515</td>
<td>275</td>
<td>294</td>
</tr>
<tr>
<td>비</td>
<td>3,545</td>
<td>309</td>
<td>353</td>
<td>비</td>
<td>5,061</td>
<td>344</td>
<td>379</td>
</tr>
<tr>
<td>안개</td>
<td>196</td>
<td>29</td>
<td>31</td>
<td>안개</td>
<td>152</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>눈</td>
<td>467</td>
<td>41</td>
<td>59</td>
<td>눈</td>
<td>521</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>기타</td>
<td>235</td>
<td>15</td>
<td>15</td>
<td>기타</td>
<td>356</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>2009</td>
<td>합계 58,701</td>
<td>3,654</td>
<td>4,471</td>
<td>2012</td>
<td>합계 63,626</td>
<td>3,676</td>
<td>3,935</td>
</tr>
<tr>
<td>맑음</td>
<td>50,707</td>
<td>2,891</td>
<td>3,746</td>
<td>맑음</td>
<td>53,638</td>
<td>2,947</td>
<td>3,132</td>
</tr>
<tr>
<td>흐림</td>
<td>2,689</td>
<td>256</td>
<td>271</td>
<td>흐림</td>
<td>3,148</td>
<td>256</td>
<td>274</td>
</tr>
<tr>
<td>비</td>
<td>4,332</td>
<td>338</td>
<td>373</td>
<td>비</td>
<td>5,511</td>
<td>383</td>
<td>431</td>
</tr>
<tr>
<td>안개</td>
<td>219</td>
<td>39</td>
<td>40</td>
<td>안개</td>
<td>171</td>
<td>27</td>
<td>32</td>
</tr>
<tr>
<td>눈</td>
<td>552</td>
<td>34</td>
<td>35</td>
<td>눈</td>
<td>768</td>
<td>39</td>
<td>41</td>
</tr>
<tr>
<td>기타</td>
<td>202</td>
<td>6</td>
<td>6</td>
<td>기타</td>
<td>390</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>2010</td>
<td>합계 58,953</td>
<td>3,445</td>
<td>3,710</td>
<td>합계 292,856</td>
<td>17,709</td>
<td>19,506</td>
<td></td>
</tr>
<tr>
<td>맑음</td>
<td>49,073</td>
<td>2,750</td>
<td>2,972</td>
<td>맑음</td>
<td>248,762</td>
<td>14,271</td>
<td>15,760</td>
</tr>
<tr>
<td>흐림</td>
<td>3,412</td>
<td>271</td>
<td>302</td>
<td>흐림</td>
<td>14,948</td>
<td>1,320</td>
<td>1,423</td>
</tr>
<tr>
<td>비</td>
<td>5,013</td>
<td>350</td>
<td>361</td>
<td>비</td>
<td>23,462</td>
<td>1,724</td>
<td>1,897</td>
</tr>
<tr>
<td>안개</td>
<td>209</td>
<td>20</td>
<td>20</td>
<td>안개</td>
<td>947</td>
<td>139</td>
<td>148</td>
</tr>
<tr>
<td>눈</td>
<td>924</td>
<td>42</td>
<td>43</td>
<td>눈</td>
<td>3,232</td>
<td>184</td>
<td>206</td>
</tr>
<tr>
<td>기타</td>
<td>322</td>
<td>12</td>
<td>12</td>
<td>기타</td>
<td>1,505</td>
<td>71</td>
<td>72</td>
</tr>
</tbody>
</table>

자료: TAAS 시스템(도로교통공단)

<그림 2-5>는 최근 5년 간 전체 교통사고와 고령운전자로 발생한 교통사고의 점유율을 나타낸 것이다. <그림 2-5>에서 보는 것과 같이 기상상태별 점유율은 전체운전자와 고령운전자에서 큰 차이를 보이지 않았으나 고령운전자의 경우 전체운전자의 차이보다 비오는 날과 흐린 날 사망사고의 점유율이 좀 더 높았고, 맑은 날은 대소 점유율이 낮은 것으로 나타났다.
안개낀 날 발생한 사고 중 사망사고의 점유율은 고령운전자에 의한 사고가 14.68%로 전체 교통사고의 경우 8.59%의 1.71배 높았으며, 흐린 날에 발생된 교통사고 중 사망사고 점유율 또한 고령운전자가 8.83%로 전체 교통사고 3.59%의 2.46배에 달하였다. 비오는 날 발생한 사고 중 사망사고 점유율은 전체사고가 2.80인데 비해 고령운전자가 의한 사고는 7.35%로 2.63배 높았다.

많은 날 역시 사마야 사고 점유율이 전체 교통사고는 2.23%인데 비해 고령운전자는 5.74%로 2.57배 높았으나 안개낀 날이나 흐린 날, 비오는 날은 사망사고 점유율이 각각 14.68%, 8.83%, 7.35%로 높아 고령운전자의 시인성 확보를 위한 대책이 필요하다.

(그림 2-6) 기상상태별 사망사고 점유율(좌: 전체 / 우: 고령운전자)

3. 고령운전자 관련연구

3.1 시각적 특성관련 연구

Bosurgi G.(2005)에 따르면 운전자가 운전 중 받아들이는 정보의 약 80%이상이 시각정보로 운전자의 시각적 활동 변화와 주행 중인 운전자의 시각부하의 중요성
3.2 인지적 특성관련 연구

운전 중에 운전자는 주변의 다양한 정보에 대응해야 하며 주의를 기울여야 하는데 는 운전부주의로 인해 25~50%의 사고가 발생되며(Shinar, 1978), 사고발전에 적절한 주의운전으로 45%의 사고를 예방할 수 있다고 하였다(Treat, 1977).

J.L. Malfett(1985)는 운전상황에 대한 정보처리와 관련하여, 운전자는 운전중 업
어지는 다양한 정보에 대해 필요여부를 판단하고 시각탐색과 함께 반응해야 하는데 운전자의 연령이 증가함에 따라 능력이 감소된다고 하였으며 이는 운전 부주의와 집중력 부족에 기인한다고 하였다. 주행 중에 얻어지는 많은 정보에 대해 정보를 조직화하는 데에 어려움을 겪어 부정확한 의사결정을 하거나 운전과 관련된 판단능력저하가 유발된다고 보고하였다.

3.3 행동반응 특성관련 연구

이용태(2009)는 고령운전자의 인지부하와 운전행동에 대해 모의주행장치를 이용하여 조사하였는데 차선페어에 관한 평가지표로 차량의 중심점이 차선의 중앙에서 벗어나는 거리에 대해 분석한 결과 60대가 20대보다 인지부하가 운전에 미치는 영향이 큰 것으로 조사되었다.

이원영(2006)은 모의운전장치를 이용하여 고령운전자의 반응을 조사하였는데
고령운전자가 복잡하고 위험한 상황에서는 교통정보처리와 관련된 반응시간 증가 등의 문제를 조금하게 단축시키려 하기 때문에 오류를 증가시키게 되며, 이로 인한 교통사고 발생을 증가시킨다고 하였다.

(표 2-9) 고령운전자의 누적반응시간

<table>
<thead>
<tr>
<th>연속운동 구분</th>
<th>정평년층</th>
<th>표준편차</th>
<th>고령층</th>
<th>표준편차</th>
</tr>
</thead>
<tbody>
<tr>
<td>가속-브레이크</td>
<td>1160</td>
<td>357</td>
<td>1391</td>
<td>524</td>
</tr>
<tr>
<td>가속-핸들</td>
<td>1191</td>
<td>397</td>
<td>1359</td>
<td>453</td>
</tr>
<tr>
<td>가속-브레이크-가속</td>
<td>1661</td>
<td>469</td>
<td>1984</td>
<td>615</td>
</tr>
<tr>
<td>가속-핸들-핸들</td>
<td>1664</td>
<td>472</td>
<td>1985</td>
<td>516</td>
</tr>
<tr>
<td>가속-브레이크-핸들</td>
<td>1715</td>
<td>424</td>
<td>2135</td>
<td>651</td>
</tr>
<tr>
<td>가속-핸들-브레이크</td>
<td>1783</td>
<td>526</td>
<td>1958</td>
<td>447</td>
</tr>
</tbody>
</table>

자료: Staplin(1991), Age difference in motion perception and specific traffic maneuver problems

![그림 2-7] 연속운동 유형별 누적반응시간

3.4 고령운전자의 운전행태 및 교통사고 특성

강수철(2013)은 고령운전자와 비고령운전자를 대상으로 속도예측검사, 선택반응검사, 장애물 회피검사 등을 수행한 결과, 고령운전자는 반응시간과 조작행동이 늦어질 가능성이 높아 교통사고 위험성이 증대될 수 있다고 하였다.
또한 이 연구에서는 차량 주행시뮬레이터를 이용, 핸들 조항각을 통해 차로유 지능력도 조사하였다. 그 결과 도시부 도로에서는 고령운전자의 핸들 조항각은 평균 10.77°, 비고령자는 3.82°로 나타났고, 고속도로에서는 고령자 0.91°, 비고령자 0.72°로 전반적으로 고령운전자의 핸들 조항각이 더 큰 것으로 분석되었다.

Cooper(1990)에 따르면 운전들은 방향전환 시에 범규위반을 많이 하는데 특히 65세 이상의 고령운전자들의 범규위반은 다른 연령층과 뚜렷한 차이를 보인다고 하였다. 이 연구에서는 고령운전자들은 야간교통사고가 상대적으로 적었으나 다른 연령대보다 치명적 위험은 증가하는 것으로 나타났는데, 특히 고령운전자들은 차로변경이나 방향전환, 차량추월에 어려움이 있는 것으로 나타났다.

![그림 2-8] 연령별 사고율 분포
자료: Comparison of the relative crash involvement ratio for signalized and non-signalized intersection crashes, (Stamatiadis et al., 1991)
2장 선행연구

3.5 야간 및 악천후 시 고령운전자 운전능력

이영남(2007)은 5년 동안 발생한 교통사망사고를 연구표본으로 하여 기상요인인 운량, 습도, 강수, 풍속 등의 4개 요인과 교통사망사고와의 관련성을 분석하고 그 중 유의미성은 나타내는 요소를 중심으로 교통사망사고와의 관련성을 심층적으로 분석하였는데, 강수량이 사고에 가장 큰 영향을 주는 것으로 분석하였다.

신연식(2001)은 신호위반사고와 중앙선 침범사고가 고령층에서 상대적으로 많이 발생되며 안전운전불이행과 안전거리미확보로 인한 사고의 야간발생비율이 22.3%, 25.4%로 다른 법규위반의 야간사고비율에 비해 높다고 분석하였다.

Staplin,L.(1990)은 야간 시 곡선구간에서 필요한 차선의 명암대비에 대해 연구하였는데, 고령운전자는 차선의 광도를 증가시키면 안전운전에 도움이 됨을 주장하였다.

김종민(2007)은 기상상태의 악화는 도로, 차량, 운전자 모두에게 큰 부담이 되며 특히 도로상의 안개는 빛을 산란시켜 운전자의 인지능력을 저하시킨다고 하였 다. 안개대응 대책으로 도로전광안내판, 안개 찾은 지역 예고표지, 안개위험경보, 차로이탈방지시설, 낮은 조명등, 안개시정 표시와 노출 LED점멸시설의 효과를 분석하고 제안하였다.

이승면(2012)은 야간 및 기상악화로 인해 발생하는 교통사고는 주간에 비해 적
사율이 2배 이상 높아 이에 대한 대비가 필요하며 곡선부 도로에서의 안전시설물로 매립형 표지병의 설치효과를 분석하였다.

국토교통부에서는 교통물류연구사업을 통해 차량안전주행기술 및 설비, 안개 등 악천후 시 교통사고를 사전에 예방하는 스마트하이웨이 사업을 7년에 걸쳐 추진하였다. 이 사업에서는 CCTV를 이용하여 안개시정거리의 인간의 눈과 유사한 수준에서 측정하는 시스템과 우천 시 운전자의 시인성을 증진시키는 우천형 노면 표시 등을 검증하였다.

![그림 2-9] 안개시정 측정시스템 구동화면

L. Hakamies-Blomqvist(1994)는 고령운전자의 야간교통사고가 다른 연령집단과 비교하여 적게 발생하나 그 치명정도는 더 높은 것으로 조사된 것으로 분석하였고 Cooper(1990)는 연령별 악천후 시 교통사고를 분석하였는데, 중년운전자 사고의 44.3%가 빗길과 눈길에서 발생하였으나 65세~74세의 고령운전자는 37.4%, 75세
이상은 31.9%로 낮은 수준을 아니라고 하였다.
제3장 모의주행실험

제1절 실험개요
제2절 모의주행실험
제3절 실험결과
제3장 모의주행실험

제1절 실험개요

1. 실험목적

본 실험이는 야간 및 악천후 시 고령운전자 노면시인성 저하로 인한 운전능력 감퇴현상을 알아보기 위하여 경기도 화성에 위치한 교통안전공단 자동차안전연구원의 차량 주행사물레이터를 이용하여 모의주행실험을 실시하였다.

2. 실험내용 및 방법

2.1 피실험자

실험에는 운전경력 3년 이상의 청년운전자와 고령운전자 각각 10명씩 총 20명이 참여하였다. 청년운전자의 경우 연령대가 모두 20대로 평균 연령은 26.5세, 운전경력 3.8년이었으며, 고령운전자는 55세 이상으로 평균여령 68.3세, 운전경력 20.7년이었다.

피실험자는 뇌질환/심장질환으로 병원에 입원하거나 치료받은 이력이 없어야 하며, 색맹, 색약 등 시각기능에 이상이 없고 좌·우 교정시력이 0.5이상인 신체 건강한 자를 대상으로 선발하였다. <표 3-1>은 실험이 참여한 피실험자의 인적사항 등을 요약한 것이다.

<table>
<thead>
<tr>
<th>구분</th>
<th>성별</th>
<th>연령</th>
<th>운전경력</th>
</tr>
</thead>
<tbody>
<tr>
<td>청년 운전자</td>
<td>남</td>
<td>26.5 ± 2.3세</td>
<td>3.8 ± 2.1년</td>
</tr>
<tr>
<td>고령 운전자</td>
<td>남</td>
<td>68.3 ± 8.2세</td>
<td>20.7년 ± 10.5년</td>
</tr>
</tbody>
</table>
제3장 모의주행실험

2.2 실험장치

실험에 사용된 가상주행시험장비는 실제 주행영상과 소음을 재현하는 영상 및 음향시스템을 갖춘 360도 돕스크린 형태이며, 시험차량과 동역학시스템 (6축 전기식 모션플랫폼 및 Yaw테이블)을 갖춘 자동차의 동역학을 구현할 수 있는 차량 주행시험대이다. <그림 3-1>은 본 실험에서 사용한 가상주행시험장비이며 <표 3-2>~<표 3-4>는 각각의 요소를 보여주는 것이다.

<그림 3-1> 차량 주행시뮬레이터 시스템
<그림 3-2> 돔 형태의 차량 주행시뮬레이터

<그림 3-3> 360도 영상 시스템

<그림 3-4> 모니터링 시스템
제2절 모의주행실험

본 실험은 4가지 기상조건 하에서 고속도로를 주행하는 상황을 대상으로 하였다. 실제도로에서의 주행실험은 사공간적으로 제약이 많고 안전성이 보장되지 않아 차량 주행시뮬레이터를 이용하여 실시하였다.

본 실험의 독립변수는 운전자의 연령대와 기상조건, 종속변수로는 차선 정주행률, 주행속도를 선정하였다.

① 독립변수 : 연령대, 기상조건
 - 연령대 : 청년층(20대 남성운전자), 고령층(55세 이상 남성운전자)
 - 기상조건 : 맑은 날 주간, 맑은 날 야간, 안개낀 날Ⅰ 주간, 안개낀 날Ⅱ 주간

② 종속변수 : 정주행률, 주행속도
 - 정주행률 : 차선이탈여부(차선이탈 횟수, 전체 주행시간에 대한 차선이탈 시간 비율)
 - 주행시간 : 평균주행속도, 전 구간에 대한 주행속도 편차

<표 3-5>은 실험에서 사용된 고속도로 주행코스이다.

피실험자에게는 주행실험 전 실험내용 및 주의사항을 설명하였다. 또한 피실
험자를 대상으로 충분한 시뮬레이터 적용시간을 갖게 하기 위하여 주행코스를 2 회씩 탑승하도록 한 후 구두로 적용여부를 확인하였다. 이 때 가상 시뮬레이터 특성으로 인한 어지러움을 호소하는 피험자가 대해서는 실험을 중단하도록 조치하였다. 또한 피험자가 실험실시 전에 약물복용이나 흡연, 커피, 알코올을 복용하지 않도록 하며, 피로가 누적되지 않은 상태에서 실험에 참여할 수 있도록 하였다.

주행실험 중에는 운전자의 시각적 각성수준(Workload)에 영향을 미치는 요인(주변 주행차량, 사고발생과 같은 이벤트)이 발생하지 않도록 하기 위하여 주행도로에는 주행실험차량 외에 타 차량이 운행하지 않도록 설계하였다. 또한 도로주변에는 별도의 조명시설이 설치되지 않은 상태에서 주행실험이 진행되었다.

고속도로 주행 시 주행차량은 4차로 중 2차로 주행하도록 하였으며 밝은 날 주간에는 시속 80~100km/h를 유지하도록 하였다. 또한 야간 주행 시에는 도로상에 조명이 없어 속도를 감속하여 60~80km/h로, 안개낀 도로를 주행할 시에는 밝은 날의 주행속도의 50% 수준인 40~50km/h를 유지하도록 하였다(표 3-2).

<table>
<thead>
<tr>
<th>기상조건</th>
<th>성별</th>
<th>주행속도</th>
<th>주행도로</th>
</tr>
</thead>
<tbody>
<tr>
<td>밝은 날</td>
<td>주간</td>
<td>80~100km/h</td>
<td>고속도로</td>
</tr>
<tr>
<td></td>
<td>야간</td>
<td>60~80km/h</td>
<td></td>
</tr>
<tr>
<td>안개낀 날 I</td>
<td>주간</td>
<td>40~50km/h</td>
<td></td>
</tr>
<tr>
<td>안개낀 날 II</td>
<td>주간</td>
<td>40~50km/h</td>
<td></td>
</tr>
</tbody>
</table>

안개낀 날 I는 가시거리 140C로, 안개낀 날 II는 가시거리 110C로 정하였고, 야간은 자정인 0시로 설정하였다. 특히 야간주행은 도로에 조명이 없는 점을 고려하여 주행 시 전조등을 커도록 하였다.

또한 학습효과를 제거할 수 있도록 피험자의 실험순서를 정하였으며 각 실험조건 하에서 주행한 후에는 25분간의 휴식을 취한 후 다음 실험조건 하에서 주행을 하도록 하였다. 청년운전자 1명의 밝은 날 주간 주행 데이터는 오류가 발생하여 분석에 사용하지 않았다.
제3장 모의주행실험

〈그림 3-6〉 맑은 날 주간 도로상황

〈그림 3-7〉 맑은 날 야간 도로상황

〈그림 3-8〉 안개낀 날 주간

38
제3절 실험결과

1. 정주행률

3.1 차선이탈회수

운전자의 연령층, 기상조건에 따라 차선이탈회수를 분석한 결과, 연령층 및 기상조건에 따라 차선이탈회수는 통계적으로 유의한 차이(각각 유의수준=0.00, 0.01)가 있는 것으로 나타났다(표 3-3).

표 3-3 연령층 및 기상조건에 따른 차선이탈회수에 변량분석 결과

<table>
<thead>
<tr>
<th>소스</th>
<th>총합(SS)</th>
<th>자유도</th>
<th>평균제곱</th>
<th>F</th>
<th>유의확률</th>
</tr>
</thead>
<tbody>
<tr>
<td>수정 모형</td>
<td>571.6</td>
<td>7</td>
<td>81.7</td>
<td>6.1</td>
<td>0.00</td>
</tr>
<tr>
<td>절편</td>
<td>933.8</td>
<td>1</td>
<td>933.8</td>
<td>69.7</td>
<td>0.00</td>
</tr>
<tr>
<td>고령여부</td>
<td>282.9</td>
<td>1</td>
<td>282.9</td>
<td>21.1</td>
<td>0.00***</td>
</tr>
<tr>
<td>기상조건</td>
<td>166.3</td>
<td>3</td>
<td>55.4</td>
<td>4.1</td>
<td>0.01***</td>
</tr>
<tr>
<td>고령여부×기상조건</td>
<td>98.0</td>
<td>3</td>
<td>32.7</td>
<td>2.4</td>
<td>0.07*</td>
</tr>
<tr>
<td>오차</td>
<td>990.9</td>
<td>74</td>
<td>13.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>합계</td>
<td>2,581.0</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>수정 합계</td>
<td>1,562.5</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$R^2=0.366$ (수정된 $R^2=0.306$)
3장 모의주행실험

청년운전자의 경우 기상조건에 따라 차선이탈회수는 통계적으로 유의한 차이가 없는 것으로 나타난 반면 고령운전자는 밝은 날 주간과 야간 주행 시 차선이탈회수는 통계적으로 유의한 차이가 없었으나 밝은 날 주간 주행과 안개낀 날(가시거리 140C, 110C)과는 각각 통계적으로 유의한 차이가 있는 것으로 나타났다(유의수준=0.00). 그러나 안개낀 날 가시거리 140C와 110C 상황에서의 주행 시 차선이탈회수는 차이가 없었다.

do주행 시 평균 차선이탈회수를 보면 밝은 날 주간에 청년운전자의 차선이탈회수는 평균 1.78회인 반면 고령운전자는 9.27회로 4.2배 많은 것으로 나타났으며, 밝은 날 야간에는 청년운전자가 1.11회인 반면 고령운전자는 3.09회로 1.9배 많았다.

또한 안개낀 날 주간에도 가시거리 140C와 가시거리 110C 환경에서 도로주행 시 청년운전자의 차선이탈회수는 각각 2.3회와 0.9회이었으나 고령운전자는 각각 5.45회와 3.18회로 1.3배와 2.5배 많은 것으로 나타났다(표 4-4, 그림 4-10).

이러한 결과는 고령운전자가 청년운전자에 비해 도로주행 시 기상환경의 영향을 더 많이 받고 있음을 보여주는 것이며, 특히 밝은 날 주간에는 도로주행속도가 높아 청년운전자에 비해 고령운전자가 차선을 유지하기 매우 어려웠던 것을 알 수 있었다.

표 3-4 연령층별 기상조건별 평균 차선이탈회수

<table>
<thead>
<tr>
<th>구분</th>
<th>밝은 날 주간</th>
<th>밝은 날 야간</th>
<th>안개낀 날Ⅰ</th>
<th>안개낀 날Ⅱ</th>
</tr>
</thead>
<tbody>
<tr>
<td>청년운전자 평균회</td>
<td>1.78</td>
<td>1.11</td>
<td>2.30</td>
<td>0.90</td>
</tr>
<tr>
<td>표준편차</td>
<td>0.97</td>
<td>1.62</td>
<td>3.09</td>
<td>1.20</td>
</tr>
<tr>
<td>고령운전자 평균회</td>
<td>9.27</td>
<td>3.09</td>
<td>5.45</td>
<td>3.18</td>
</tr>
<tr>
<td>표준편차</td>
<td>5.69</td>
<td>5.47</td>
<td>3.98</td>
<td>2.86</td>
</tr>
</tbody>
</table>

3.2 차선이탈시간

운전자의 연령층, 기상조건에 따라 차선이탈시간을 분석한 결과, 연령층에 따라 차선이탈시간은 통계적으로 유의한 차이가 있는 것으로 나타났으나 기상조건에 따라서는 통계적으로 유의한 차이가 없는 것으로 나타났다(유의수준=0.00)(표 3-5).
청년운전자의 경우 기상조건에 따라 차선이탈시간은 통계적으로 유의한 차이가 없었으나 고령운전자는 밤의 날 주간과 야간 주행 시 차선이탈시간은 통계적으로 유의한 차이가 없었으나 밤의 날 주간 주행과 안개낀 날(가시거리 140C, 110C)에는 각각 통계적으로 유의한 차이가 있는 것으로 나타났다(유의수준=0.05). 그러나 안개낀 날 가시거리 140C와 110C 상황에서도 높이 차선이탈시간은 차이가 없었다.

도로주행 시 평균 차선이탈시간을 보면 밤의 날 주간에 청년운전자의 차선이탈화수는 평균 2.52초인 반면 고령운전자는 19.95초로 6.9배 많은 것으로 나타났으며, 밤의 날 야간에는 청년운전자가 4.1초인 반면 고령운전자는 13.25초로 3.2배 많았다.

또한 맑은 날 주간에도 가시거리 140C가 가시거리 110C 환경에서 도로주행 시 청년운전자의 차선이탈시간은 각각 3.07초와 7.94초였으나 고령운전자는 각각 5.91초와 7.94초로 0.9배와 1.1배 큰 것으로 나타났다(표 3-6, 그림 3-11).
3장 모의주행실험

(표 3-5) 연령층 및 기상조건에 따른 차선이탈시간에 변량분석 결과

<table>
<thead>
<tr>
<th>소스</th>
<th>제곱합(SS)</th>
<th>자유도</th>
<th>평균제곱</th>
<th>F</th>
<th>유의확률</th>
</tr>
</thead>
<tbody>
<tr>
<td>수정 모형</td>
<td>2,745.6</td>
<td>7</td>
<td>392.22</td>
<td>3.32</td>
<td>0.00</td>
</tr>
<tr>
<td>절편</td>
<td>4,658.9</td>
<td>1</td>
<td>4,658.94</td>
<td>39.42</td>
<td>0.00</td>
</tr>
<tr>
<td>고령여부</td>
<td>1,435.4</td>
<td>1</td>
<td>1,435.41</td>
<td>12.15</td>
<td>0.00***</td>
</tr>
<tr>
<td>기상조건</td>
<td>248.1</td>
<td>3</td>
<td>82.71</td>
<td>1.85</td>
<td>0.15</td>
</tr>
<tr>
<td>고령여부×기상조건</td>
<td>656.0</td>
<td>3</td>
<td>218.65</td>
<td>1.85</td>
<td>0.15</td>
</tr>
<tr>
<td>오차</td>
<td>8,745.5</td>
<td>74</td>
<td>118.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>합계</td>
<td>16,577.8</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>수정 합계</td>
<td>11,491.1</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$R^2=0.239$ (수정된 $R^2=0.167$)

(표 3-6) 연령층별·기상조건별 평균 차선이탈시간

<table>
<thead>
<tr>
<th>구분</th>
<th>밝은 날 주간</th>
<th>밝은 날 야간</th>
<th>안개낀 날 I</th>
<th>안개낀 날 II</th>
</tr>
</thead>
<tbody>
<tr>
<td>청년 운전자</td>
<td>평균(초) 2.52</td>
<td>4.10</td>
<td>3.07</td>
<td>3.77</td>
</tr>
<tr>
<td>표준편차</td>
<td>1.91</td>
<td>7.73</td>
<td>5.41</td>
<td>6.78</td>
</tr>
<tr>
<td>고령 운전자</td>
<td>평균(초) 19.95</td>
<td>13.25</td>
<td>5.91</td>
<td>7.94</td>
</tr>
<tr>
<td>표준편차</td>
<td>16.35</td>
<td>11.80</td>
<td>7.11</td>
<td>17.25</td>
</tr>
</tbody>
</table>

(그림 3-11) 연령층별·기상조건별 평균 차선이탈시간
3.3 차량중심과 차선중심 간의 거리

차량중심과 차선중심의 거리는 연령층에 따라 통계적으로 유의한 차이가 있으나 기상조건에 따라서 차이가 없는 것으로 나타났다(유의수준<0.05)(표 3-7).

표 3-7 연령층 및 기상조건에 따른 차량과 차선중심선 간에 변량분석 결과

<table>
<thead>
<tr>
<th>소스</th>
<th>제곱합(SS)</th>
<th>자유도</th>
<th>평균제곱</th>
<th>F</th>
<th>유의확률</th>
</tr>
</thead>
<tbody>
<tr>
<td>수정 모형</td>
<td>0.187</td>
<td>7</td>
<td>0.027</td>
<td>1.069</td>
<td>0.392</td>
</tr>
<tr>
<td>절편</td>
<td>0.168</td>
<td>1</td>
<td>0.168</td>
<td>6.969</td>
<td>0.012</td>
</tr>
<tr>
<td>고령여부</td>
<td>0.158</td>
<td>1</td>
<td>0.158</td>
<td>6.310</td>
<td>0.014</td>
</tr>
<tr>
<td>기상조건</td>
<td>0.020</td>
<td>3</td>
<td>0.007</td>
<td>0.260</td>
<td>0.854</td>
</tr>
<tr>
<td>고령여부×기상조건</td>
<td>0.008</td>
<td>3</td>
<td>0.003</td>
<td>0.102</td>
<td>0.999</td>
</tr>
<tr>
<td>오차</td>
<td>1.852</td>
<td>74</td>
<td>0.025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>합계</td>
<td>2.186</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>수정 합계</td>
<td>2.040</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$R^2 = 0.092$ (수정된 $R^2 = 0.006$)

청년운전자의 경우, 기상조건에 따른 차량과 차선중심선과의 거리는 통계적으로 유의한 차이가 없었으나, 고령운전자는 맑은 날과 야간 운전 시 중심간 거리는 통계적으로 유의한 차이가 없었으나, 맑은 날과 안개낀 날 I, II와는 각각 통계적으로 유의한 차이가 있었다(유의수준=0.00). 또한 고령운전자는 야간과 안개낀 날 I과 II와도 유의한 차이가 있는 것으로 나타났다(유의수준<0.05). 그러나 안개낀 날 I과 II 간의 차이는 없었다.

많은 날에 고령자운전자의 중심거리는 차이는 0.029로 청년운전자 0.07m의 0.41배 수준으로 나타났으며 야간의 경우도 고령운전자는 0.033m로 청년운전자 0.089m로 0.37배 수준인 것으로 분석되었으며, 안개낀 날 I과 II에서는 고령운전자이 각각 0.010m과 0.012m이었으나 청년운전자는 각각 0.097m와 0.101m로 0.11배와 0.12배 수준이었다(표 3-8, 그림 3-12).
3장 모의주행실험

(표 3-8) 연령층 및 기상조건별 차량과 차선 중심선 간거리

<table>
<thead>
<tr>
<th>구분</th>
<th>구분</th>
<th>맑은 날 주간</th>
<th>맑은 날 야간</th>
<th>안개낀 날 I</th>
<th>안개낀 날 II</th>
</tr>
</thead>
<tbody>
<tr>
<td>청년 운전자</td>
<td>평균(m)</td>
<td>0.070</td>
<td>0.089</td>
<td>0.097</td>
<td>0.101</td>
</tr>
<tr>
<td></td>
<td>표준편차</td>
<td>0.112</td>
<td>0.180</td>
<td>0.183</td>
<td>0.166</td>
</tr>
<tr>
<td>고령 운전자</td>
<td>평균(m)</td>
<td>-0.029</td>
<td>0.033</td>
<td>-0.010</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>표준편차</td>
<td>0.166</td>
<td>0.128</td>
<td>0.163</td>
<td>0.154</td>
</tr>
</tbody>
</table>

(그림 3-12) 연령층별·기상조건별 차량과 차선 중심선과의 거리

3.4 차량중심과 차선중심 간 거리편차

차량중심과 차선중심간 거리편차는 연령층 및 기상조건 따라 통계적으로 유의한 차이가 있으나 기상조건에 따라서는 차이가 없는 것으로 나타났다(유의수준 = 0.00)(표 3-9)
（표 3-9）연령층 및 기상조건에 따른 차량중심과 차선중심간 거리편차의 변량분석 결과

<table>
<thead>
<tr>
<th>소스</th>
<th>제곱합(SS)</th>
<th>자유도</th>
<th>평균제곱</th>
<th>F</th>
<th>유의확률</th>
</tr>
</thead>
<tbody>
<tr>
<td>수정 모형</td>
<td>0.385</td>
<td>7</td>
<td>0.055</td>
<td>10.167</td>
<td>0.000</td>
</tr>
<tr>
<td>점편</td>
<td>8.492</td>
<td>1</td>
<td>8.492</td>
<td>1569.405</td>
<td>0.000</td>
</tr>
<tr>
<td>고령여부</td>
<td>0.195</td>
<td>1</td>
<td>0.195</td>
<td>36.068</td>
<td>0.000</td>
</tr>
<tr>
<td>기상조건</td>
<td>0.146</td>
<td>3</td>
<td>0.049</td>
<td>8.989</td>
<td>0.000</td>
</tr>
<tr>
<td>고령여부×기상조건</td>
<td>0.031</td>
<td>3</td>
<td>0.010</td>
<td>1.921</td>
<td>0.133</td>
</tr>
<tr>
<td>오차</td>
<td>0.400</td>
<td>74</td>
<td>0.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>합계</td>
<td>9.526</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>수정 합계</td>
<td>0.785</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[R^2 = 0.490 \] (수정된 \(R^2 = 0.442 \))

사후 검증 결과, 청년운전자의 경우 기상조건에 따른 차량과 차선중심선의 거리는 통계적으로 유의한 차이가 없었으며 고령운전자는 밝은 날과 야간은 통계적으로 유의한 차이가 없었으나 밝은 날 안개낀 날 I., II와는 각각 통계적으로 유의한 차이가 있는 것으로 나타났다(유의수준=0.00). 또한 고령운전자는 야간과 안개낀 날 I과 II와도 유의한 차이가 있는 것으로 나타났다(유의수준=0.05). 그러나 안개낀 날 I과 II간의 차이는 없는 것으로 분석되었다.

중심거리편차는 밝은 날 고령자가 0.456m로 청년운전자 0.299m의 1.52배 큰 것으로 나타났으며 야간의 경우도 고령운전자는 0.406m로 청년운전자 0.295m로 1.37배 큰 것으로 분석되었다. 또한 안개낀 날 I과 II에서는 고령운전자의 각각 0.311m와 0.314m이었으나 청년운전자는 각각 0.252m와 0.249m로 1.23배와 1.26배 큰 것으로 나타났다(표 3-10, 그림 3-13).

（표 3-10）연령층별·기상조건별 차량과 차선중심간 거리편차

<table>
<thead>
<tr>
<th>구분</th>
<th>밝은 날 주간</th>
<th>밝은 날 야간</th>
<th>안개낀 날 I</th>
<th>안개낀 날 II</th>
</tr>
</thead>
<tbody>
<tr>
<td>청년운전자</td>
<td>평균(초)</td>
<td>0.299</td>
<td>0.295</td>
<td>0.252</td>
</tr>
<tr>
<td></td>
<td>표준편차</td>
<td>0.044</td>
<td>0.066</td>
<td>0.047</td>
</tr>
<tr>
<td>고령운전자</td>
<td>평균(초)</td>
<td>0.456</td>
<td>0.406</td>
<td>0.311</td>
</tr>
<tr>
<td></td>
<td>표준편차</td>
<td>0.108</td>
<td>0.086</td>
<td>0.047</td>
</tr>
</tbody>
</table>

45
제3장 모의주행실험

![그림 3-13] 연령층별, 기상조건별 차량과 차선중심 간 거리편차

- 정년운전자
- 고령운전자

(그림 3-13) 연령층별, 기상조건별 차량과 차선중심 간 거리편차

![그림 3-14] 최대운행속도 대비 중심거리 간 편차

- 정년운전자
- 고령운전자

(그림 3-14) 최대운행속도 대비 중심거리 간 편차

제3장 모의주행실험

![그림 3-13] 연령층별, 기상조건별 차량과 차선중심 간 거리편차

- 정년운전자
- 고령운전자

(그림 3-13) 연령층별, 기상조건별 차량과 차선중심 간 거리편차

![그림 3-14] 최대운행속도 대비 중심거리 간 편차

- 정년운전자
- 고령운전자

(그림 3-14) 최대운행속도 대비 중심거리 간 편차
2. 주행속도

2.1 평균 주행속도

운전자 연령층, 기상조건에 따라 차선이탈시간을 분석한 결과, 연령층 및 기상조건에 따라 평균주행속도는 통계적으로 유의한 차이가 있는 것으로 나타났다 (유의수준=0.00)(표 3-11). 이는 기상조건에 따라 주행속도를 정하여 실험이 이루어졌기 때문이다. 따라서 평균 주행속도에 대한 분석은 기상조건별로 운전자의 연령층에 따른 평균주행속도의 차에 대한 T-test를 실시하였다. 그 결과, 고령운전자의 평균 주행속도는 청년운전자에 비해 비교적 주행속도가 빠른 밤의 주간과 야간 주행시 주행속도가 각각 8.8km/h와 6.65km/h 큰 것으로 나타났다(표 3-12, 그림 3-15).

(표 3-11) 연령층 및 기상조건에 따른 평균 주행속도에 변량분석 결과

<table>
<thead>
<tr>
<th>소스</th>
<th>제공합(SS)</th>
<th>자유도</th>
<th>평균제곱</th>
<th>F</th>
<th>유의확률</th>
</tr>
</thead>
<tbody>
<tr>
<td>수정 모형</td>
<td>17,895.1</td>
<td>7</td>
<td>2,556.44</td>
<td>168.65</td>
<td>0.00</td>
</tr>
<tr>
<td>절편</td>
<td>28,773.1</td>
<td>1</td>
<td>287,731.46</td>
<td>18,981.72</td>
<td>0.00</td>
</tr>
<tr>
<td>고령여부</td>
<td>370.0</td>
<td>1</td>
<td>369.96</td>
<td>24.41</td>
<td>0.00</td>
</tr>
<tr>
<td>기상조건</td>
<td>17,473.8</td>
<td>3</td>
<td>5,824.59</td>
<td>384.25</td>
<td>0.00</td>
</tr>
<tr>
<td>고령여부×기상조건</td>
<td>268.9</td>
<td>3</td>
<td>89.63</td>
<td>5.91</td>
<td>0.00</td>
</tr>
<tr>
<td>오차</td>
<td>1121.7</td>
<td>74</td>
<td>15.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>합계</td>
<td>306,642.4</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>수정 합계</td>
<td>19,016.8</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R²=0.941(수정된 R²=0.935)

(표 3-12) 연령층별 기상조건 평균 주행속도 차에 대한 t-test

<table>
<thead>
<tr>
<th>구분</th>
<th>t</th>
<th>자유도</th>
<th>유의확률 (양쪽)</th>
<th>평균차</th>
<th>표준오차</th>
</tr>
</thead>
<tbody>
<tr>
<td>밝은 날 주간</td>
<td>3.99</td>
<td>18</td>
<td>0.001</td>
<td>8.80</td>
<td>2.20</td>
</tr>
<tr>
<td>밝은 날 야간</td>
<td>3.18</td>
<td>19</td>
<td>0.005</td>
<td>6.65</td>
<td>2.09</td>
</tr>
<tr>
<td>안개낀 날 I</td>
<td>-0.31</td>
<td>19</td>
<td>0.761</td>
<td>-0.32</td>
<td>1.05</td>
</tr>
<tr>
<td>안개낀 날 II</td>
<td>1.52</td>
<td>18</td>
<td>0.15</td>
<td>1.95</td>
<td>1.27</td>
</tr>
</tbody>
</table>
제3장 모의주행실험

2.2 주행속도편차

운전자연령층, 기상조건에 따라 차선이탈시간을 분석한 결과, 연령층 및 기상조건에 따라 주행속도편차는 통계적으로 유의한 차이가 있는 것으로 나타났다 (유의수준=0.00)(표 3-13).

<table>
<thead>
<tr>
<th>소스</th>
<th>총제곱(SS)</th>
<th>자유도</th>
<th>평균제곱</th>
<th>F</th>
<th>유의확률</th>
</tr>
</thead>
<tbody>
<tr>
<td>수정 모형</td>
<td>981.4</td>
<td>7</td>
<td>140.20</td>
<td>28.98</td>
<td>0.00</td>
</tr>
<tr>
<td>젤편</td>
<td>7,301.6</td>
<td>1</td>
<td>7,301.61</td>
<td>1,509.24</td>
<td>0.00</td>
</tr>
<tr>
<td>고령여부</td>
<td>51.6</td>
<td>1</td>
<td>51.56</td>
<td>10.66</td>
<td>0.00</td>
</tr>
<tr>
<td>기상조건</td>
<td>922.7</td>
<td>3</td>
<td>307.57</td>
<td>63.58</td>
<td>0.00</td>
</tr>
<tr>
<td>고령여부×기상조건</td>
<td>1.3</td>
<td>3</td>
<td>0.44</td>
<td>0.09</td>
<td>0.96</td>
</tr>
<tr>
<td>오차</td>
<td>358.0</td>
<td>74</td>
<td>4.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>합계</td>
<td>8,756.1</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>수정 합계</td>
<td>1,339.4</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R²=0.941 (수정된 R²=0.935)

청년운전자는 기상조건별 주행속도편차는 통계적으로 유의한 차이가 있었으며
(유의수준=0.00), 고령운전자 또한 기상조건별로 주행속도편차는 유의수준 0.00에서 통계적으로 차이가 있는 것으로 나타났다. 안개낀 날 I, II는 차이가 없었다.

고속도로주행 시 주행속도편차는 밝은 날 주간에 청년운전자는 평균 13.4km/h인 반면 고령운전자는 14.6km/h로 0.1배 많은 것으로 나타났으며, 밝은 날 야간에는 청년운전자에 10.5km/h인 반면 고령운전자는 12.4km/h로 0.2배 많았다.

또한 안개낀 날 I과 II의 환경에서 도로주행 시 청년운전자의 주행속도편차는 각각 5.5km/h와 5.3km/h로 고령운전자는 7.2km/h와 6.9m/h의 각각 0.3배 큰 것으로 나타났다(표 3-14, 그림 3-16).

<table>
<thead>
<tr>
<th>구분</th>
<th>평균(km/h)</th>
<th>표준편차</th>
<th>평균(km/h)</th>
<th>표준편차</th>
</tr>
</thead>
<tbody>
<tr>
<td>청년운전자</td>
<td>13.4</td>
<td>1.9</td>
<td>10.5</td>
<td>2.1</td>
</tr>
<tr>
<td>고령운전자</td>
<td>14.6</td>
<td>3.0</td>
<td>12.4</td>
<td>3.4</td>
</tr>
</tbody>
</table>

(표 3-14) 연령층별·기상조건별 주행속도편차

(그림 3-16) 연령층별·기상조건별 주행속도 편차
최대운행속도 대비 주행속도단락

<그림 3-17> 최대운행속도 대비 평균 차선이탈시간
제4장 맺음말
제4장 맺음말

본 연구에서는 야간 및 악천후 시 고령자의 시인성 감퇴 현상과 이에 따른 운전행태를 알아보기 위하여 차량시뮬레이터를 이용하여 고속도로에서 주행실험을 실시하였다. 그 결과, 청년운전자와 고령운전자 각각 12명씩을 대상으로 맑은 날 (주간, 야간), 안개낀 날(140C, 110C)에서 고속도로를 주행하도록 하여 정주행률(차선이탈회수, 차선이탈시간, 차량과 차선간의 중심거리, 중심거리 편차)과 주행속도 (주행속도, 주행속도편차) 등에 대하여 비교분석 하였으며, 분석결과 다음과 같은 결과를 얻었다.

① 차선이탈회수는 고령운전자와 청년운전자에 비해 기상조건에 따라 각각 1.3배에서 4.2배 많은 것으로 나타났다. 특히 주행속도가 높은 날 주간에는 차이가 가장 큰 것으로 나타났다. 안개낀 날은 난해한 날에 비해 차선이탈회수가 적었고 시야확보가 보다 용이한 안개낀 날 I는 안개낀 날 II나 야간에 비해서도 이탈회수가 많음. 이는 시야가 확보된 경우 운전자는 차선유지에 더 신경을 쓰기 때문인 것으로 보임.

② 차선이탈시간의 경우 청년운전자는 기상조건에 따라 통계적으로 유한 차이가 없었으나, 고령운전자의 경우 맑은 날 주간과 야간에 오히려 차선이탈시간이 길게 나타났다. 이러한 현상 역시 시야가 확보된 경우 운전자는 차선유지에 더 신경을 쓰기 때문인 것으로 보이며, 더욱이 이 두 조건하에서는 차량의 높은 운행속도가 영향을 미친 것으로 판단됨.

③ 차량중앙과 차선중앙 간 거리의 경우 청년운전자는 기상조건에 따라 통계적으로 유한 차이가 없었으나, 고령운전자의 경우 맑은 날 주간과 야간에 더 멀게 나타났다. 또한 고령운전자는 청년운전자에 비해 오히려 중심간 거
리가 짧게 나타나 차선 중심에서 운행하려고 노력하는 것으로 나타남

④ 중심거리편차의 경우 청년운전자는 기상조건에 따라 통계적으로 유한 차이가 없었으나, 고령운전자의 경우 밝은 날 주간과 야간에 더 크게 나타남. 또한 고령운전자는 청년운전자에 비해 오히려 중심간 거리가 짧게 나타난 것과는 달리 중심거리편차는 고령운전자가 청년운전자에 비해 1.2에서 1.5배 이상 큰 것으로 나타남. 이러한 결과는 청년운전자는 주행자선 중 한 방향으로 치우쳐 주행하고 있으나 큰 흔들림없이 주행을 유지하는 반면, 고령운전자는 차선 중심을 유지하기 위한 부하를 많이 받고 있는 것으로 판단됨.

⑤ 주행속도의 경우 기상조건별로 일정한 속도를 유지하여 주행하도록 하였기 때문에 기상조건별 속도차이가 당연히 나타남. 그러나 각 기상조건별로 청년운전자가 고령운전자에 비해 운행속도가 높았음. 청년운전자는 최대속도를 유지하려는 반면 고령운전자는 최저속도를 유지하려는 경향이 있는 것으로 나타났는데 밝은 날 주간과 야간에 두 그룹간의 속도차는 통계적으로 유한 차이가 있었으나 안개상황에서는 통계적으로 유의한 차이는 없었음.

⑥ 주행속도편차의 경우, 운전자 연령층에 따라, 기상조건에 따라 모두 통계적으로 유한 차이가 있음. 그러나 안개진 두 상황 간에는 차이가 없음. 모든 운전자가 밝은 날 주간과 야간이 안개진 날에 비해 편차가 적었으며, 고령운전자는 청년운전자에 비해 속도편차가 큰 것으로 나타남.

○ 위와 같은 결과로 볼 때 운전자들은 시야가 확보되지 않는 야간이나 안개 상황에서는 밝은 날 주간에 비해 차선을 유지하려는 정주행률이 오히려 높게 나타남. 특히 고령운전자의 경우 이러한 현상은 더욱 두드러지게 나타낫는데 이는 고령운전자가 시야가 확보되지 않아 상당한 정신적 부하를 안고 운전하는 것으로 나타남.
따라서 야간이나 악천후 상황에서 운전자의 시야 및 노면 시인성을 높여주기 위한 개선들이 필요하다. 현재는 악천후 시 전면시인성을 높이기 위해 차량 전면 유리창에 주행방향의 상황을 디스플레이 해주는 HUD가 개발되었으며, 악천후 시 시야폭을 넓혀주기 위한 고령운전자용 전조등이 개발되기도 하였다.

![그림 4-1] 악천후 시 고령운전자용 전조등 (참고문헌달기)

또한 상습적으로 안개가 발생하는 지역, 특히 교량부분에서의 차량 간 연쇄충돌을 예방하고자 라인조명을 개발되어 구포대교 등에 설치되었다. 2013년 개통된 제2서행안 고속도로 시화대교에는 안개발생 시 교량노면을 밝게 할 수 있는 LED 난간 조명을 설치하여 운행 중이다.

![그림 4-2] 부산 구포대교 라인조명 설치사례(국제신문, 2013. 1.11자)
이 외에도 노면시인성을 개선하기 위하여 비오는 밤에도 잘 보이는 '울퉁불퉁'
차선비오는 밤에도 잘 보이는 '울퉁불퉁' 차선을 개발하는 등 다양한 재질을 개발
하여 시인성 확보노력을 추진 중임. 운전자의 시인성이 확보는 교통사고예방에
매우 중요한 요소이므로 이에 대한 연구개발이 더욱 필요한 상황이다.
참 고 문 헌

1. 심은석, 고령운전자 인적요인이 교통사고 피해단상에 미치는 실증연구, 한남대학교, 2009.
2. 김정오, 옵적이는 물체의 탐지에 있어서 대비감민도와 시각의 역할, 도로교통안전협회, 1993.
5. 안전행정부, 주민등록인구통계, 2011.
6. 정연식, 오세창, 체진들, 고령운전자 교통사고 감소방안, 한국교통연구원, 2011
7. 이성기, 안개지역의 교통사고 심각도 모형개발에 관한 연구, 한양대학교, 2008
8. 이영남, 김광원, 기상요소와 교통사망사고의 관계에 관한 연구, 한국경찰연구 제6권 제3호 (2007년 겨울).
11. 이승만, 교통안전을 고려한 매립형표지병 설치에 따른 효과분석, 서울시립대학교 학위논문, 2012.
13. 박준태, 홍지연, 이수범, 기상특성에 따른 교통사고 안전성 평가지표 계발 (고속도로를 대상으로), 대한교통학회지 28권 제1호, 2010.
| 정책연구 | 2013-02 |
|--------------------------------|
| 야간 및 악천후 시 고령운전자 노면시인성 증진방안 연구 |
| - 운전행동 분석 중심으로 |
| 인쇄 : 2013년 12월 31일 |
| 발행 : 2013년 12월 31일 |
| 발행인 : 교통안전공단 이사장 정일영 |
| 발행처 : 교통안전공단 미래교통IT본부 안전연구처 |
| 주소 : 경기도 안산시 단원구 화랑로 376 (우)425-810 |
| 전화 : 031-362-3708 |
| FAX : 031-481-0491 |
| 홈페이지 : www.ts2020.kr |
| 인쇄처 : 성진문화 02-2272-4641 |
| ISBN : 89-965-7331-0(93560) |

※ 저작권법에 의하여 본 보고서 내용의 무단전제 및 복사·배포를 금합니다.
※ 본 보고서의 PDF파일은 교통안전공단 홈페이지(www.ts2020.kr) 내 지식자료실에서 검색하시면 다운로드 받으실 수 있습니다.