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We give an explicit expression for the geometric measure of entanglement for three-qubit states that are
linear combinations of four orthogonal product states. It turns out that the geometric measure for these states
has three different expressions depending on the range of definition in parameter space. Each expression of the
measure has its own geometrically meaningful interpretation. Such an interpretation allows oneself to take one
step toward a complete understanding for the general properties of the entanglement measure. The states that
lie on joint surfaces separating different ranges of definition, designated as shared states, seem to have par-
ticularly interesting features. The properties of the shared states are fully discussed.

DOI: 10.1103/PhysRevA.78.032304 PACS number�s�: 03.67.Mn, 02.10.Yn, 02.40.Dr

I. INTRODUCTION

Entanglement is the most intriguing feature of quantum
mechanics and a key resource in quantum-information sci-
ence. One of the main goals in these theories is to develop a
comprehensive theory of multipartite entanglement. Various
entanglement measures have been invented to quantify the
multiparticle entanglement �1–7� but none of them were able
to suggest a method for calculating a measure of multipartite
systems. This mathematical difficulty is the main obstacle to
elaborate a theory of multiparticle entanglement.

In this paper, we present the first calculation of the geo-
metric measure of entanglement �7–9� for three-qubit states
which are expressed as linear combinations of four given
orthogonal product states. Any pure three-qubit state can be
written in terms of five preassigned orthogonal product states
�10� via Schmidt decomposition. Thus the states discussed
here are more general states compared to the well-known
Greenberger-Horne-Zeilinger �GHZ� �11� and W �12� states.

The reason for using the geometric measure of entangle-
ment is that it is suitable for any partite system regardless of
its dimensions. However, analytical computation for generic
states still remains as a great challenge. The measure de-
pends on entanglement eigenvalue �max

2 and can be derived
from the formula Eg���=1−�max

2 . For pure states, the en-
tanglement eigenvalue is equal to the maximal overlap of a
given state with any complete product state. This measure
has the following remarkable properties:

�i� It has an operational treatment. The same overlap �max
2

defines Groverian measure of entanglement �13,14� which
has been introduced later in operational terms. In other
words, it quantifies how well a given state serves as an input
state to Grover’s search algorithm �15�. From this view,
Groverian measure can be regarded as an operational treat-
ment of the geometric measure.

�ii� It has identified irregularity in channel capacity addi-
tivity �16�. Using this measure, one can show that a family of
quantities, which were thought to be additive in earlier pa-
pers, actually are not. For example, it is natural to conjecture
that preparing two pairs of entangled particles should give us

2 times the entanglement of one pair and, similarly, using a
channel twice doubles its capacity. However, this conjecture
claiming additivity has been proved to be wrong in some
cases.

�iii� It has useful connections to other entanglement mea-
sures and gives rise to a lower bound on the relative entropy
of entanglement �17� and generalized robustness �18�. For
certain pure states the first lower bound is saturated and thus
their relative entropy of entanglement can be deduced from
their geometric measure of entanglement. The second lower
bound to generalized robustness can be express in terms of
�max

2 directly.
Owing to these features, the geometric measure can play

an important role in the investigation of different problems
related to entanglement. For example, the entanglement of
two distinct multipartite bound entangled states can be deter-
mined analytically in terms of a geometric measure of en-
tanglement �19�. Recently, the same measure has been used
to understand the physical implication of Zamolodchikov’s
c-theorem �20� more deeply. It is an important application
regarding the quantum-information techniques in the effect
of renormalization group in field theories �21�. Thus it is
natural that geometric measure of entanglement is an object
of intense interest and in some recent works revised �22� and
generalized �23� versions of the geometric measure were pre-
sented.

The progress made to date allows oneself to calculate the
geometric measure of entanglement for pure three-qubit sys-
tems �24�. The basic idea is to use �n−1�-qubit mixed states
to calculate the geometric measure of n-qubit pure states. In
the case of three qubits this idea converts the task effectively
into the maximization of the two-qubit mixed state over
product states and yields linear eigenvalue equations �25�.
The solution of these linear eigenvalue equations reduces to
the root finding for algebraic equations of degree 6. How-
ever, three-qubit states containing symmetries allow com-
plete analytical solutions and explicit expressions as the
symmetry reduces the equations of degree 6 to the quadratic
equations. Analytic expressions derived in this way are
unique and the presented effective method can be applied for
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extended quantum systems. Our aim is to derive analytic
expressions for a wider class of three-qubit systems and in
this sense this work is the continuation of Ref. �25�.

We consider most general W-type three-qubit states that
allow to derive analytic expressions for entanglement eigen-
value. These states can be expressed as linear combinations
of four given orthogonal product states. If any of the coeffi-
cients in this expansion vanishes, then one obtains the states
analyzed in �25�. Notice that arbitrary linear combinations of
five product states �10� give a couple of algebraic equations
of degree 6. Hence Évariste Galois’s theorem does not allow
to get analytic expressions for these states except for some
particular cases.

We derive analytic expressions for an entanglement eigen-
value. Each expression has its own applicable domain de-
pending on state parameters and these applicable domains
are split up by separating surfaces. Thus the geometric mea-
sure distinguishes different types of states depending on the
corresponding applicable domain. States that lie on separat-
ing surfaces are shared by two types of states and acquire
new features.

In Sec. II we derive stationarity equations and their solu-
tions. In Sec. III we specify three-qubit states under consid-
eration and find relevant quantities. In Sec. IV we calculate
entanglement eigenvalues and present explicit expressions.
In Sec. V we separate the validity domains of the derived
expressions. In Sec. VI we discuss shared states. In Sec. VII
we make concluding remarks.

II. STATIONARITY EQUATIONS

In this section we briefly review the derivation of the
stationarity equations and their general solutions �25�. De-
note by �ABC the density matrix of the three-qubit pure state
and define the entanglement eigenvalue �max

2 �7�,

�max
2 = max

�1�2�3
tr��ABC�1

� �2
� �3� , �1�

where the maximization runs over all normalized complete
product states. Theorem 1 of Ref. �24� states that the maxi-
mization of a pure state over a single-qubit state can be com-
pletely derived by using a particle traced over density matrix.
Hence the theorem allows us to reexpress the entanglement
eigenvalue by reduced density matrix �AB of qubits A and B,

�max
2 = max

�1�2
tr��AB�1

� �2� . �2�

Now we introduce four Bloch vectors:
�1� rA for the reduced density matrix �A of the qubit A,
�2� rB for the reduced density matrix �B of the qubit B,
�3� u for the single-qubit state �1,
�4� v for the single-qubit state �2.
Then the expression for entanglement eigenvalue �2�

takes the form

�max
2 =

1

4
max

u2=v2=1

�1 + u · rA + v · rB + gijuiv j� , �3�

where �summation on repeated indices i and j is understood�

gij = tr��AB�i � � j� �4�

and �i’s are Pauli matrices. The closest product state satisfies
the stationarity conditions

rA + gv = �1u, rB + gTu = �2v , �5�

where Lagrange multipliers �1 and �2 enforce the unit Bloch
vectors u and v. The solutions of Eq. �5� are

u = ��1�21 − ggT�−1��2rA + grB� ,

v = ��1�21 − gTg�−1��1rB + gTrA� . �6�

Unknown Lagrange multipliers are defined by the equations

u2 = 1, v2 = 1. �7�

In general, Eq. �7� gives algebraic equations of degree 6.
The reason for this is that stationarity equations define all
extremes of the reduced density matrix �AB over product
states, regardless of them being global or local. The degree
of the algebraic equations is the number of possible ex-
tremes.

Equation �6� contains valuable information. It provides
solid bases for a new numerical approach. This can be com-
pared with the numerical calculations based on other tech-
niques �26�.

III. THREE-QUBIT STATE

We consider the W-type state

��� = a�100� + b�010� + c�001� + d�111� , �8�

where free parameters a ,b ,c ,d satisfy the normalization
condition a2+b2+c2+d2=1. Without loss of generality we
consider only the case of positive parameters a ,b ,c ,d. At
first sight, it is not obvious whether the state allows analytic
solutions or not. However, it does, and our first task is to
confirm the existence of the analytic solutions.

In fact, entanglement of the state, Eq. �8�, is invariant
under the permutations of four parameters a ,b ,c ,d. The in-
variance under the permutations of three parameters a ,b ,c is
the consequence of the invariance under the permutations of
qubits A ,B ,C. Now we make a local unitary �LU� transfor-
mation that relabels the bases of qubits B and C, i.e.,
0B↔1B, 0C↔1C, and does not change the basis of qubit A.
This LU transformation interchanges the coefficients as fol-
lows: a↔d, b↔c. Since any entanglement measure must be
invariant under LU transformations and the permutation
b↔c, it must be also invariant under the permutation a↔d.
In view of this symmetry, any entanglement measure must be
invariant under the permutations of all of the state param-
eters a ,b ,c ,d. Owing to this symmetry, the state allows us to
derive analytic expressions for the entanglement eigenvalues.
The necessary condition is �25�

det��1�21 − ggT� = 0. �9�

Indeed, if the condition �9� is fulfilled, then the expres-
sions �6� for the general solutions are not applicable and Eq.
�5� admits further simplification.
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Denote by i , j ,k unit vectors along axes x ,y ,z, respec-
tively. Straightforward calculation yields

rA = r1k, rB = r2k, g = �2� 0 0

0 2� 0

0 0 − r3
� , �10�

where

r1 = b2 + c2 − a2 − d2, r2 = a2 + c2 − b2 − d2,

r3 = a2 + b2 − c2 − d2,

� = ab + dc, � = ab − dc . �11�

Vectors u and v can be written as linear combinations

u = uii + ujj + ukk, v = vii + v jj + vkk �12�

of vectors i , j ,k. The substitution of Eq. �12� into Eq. �5�
gives a couple of equations in each direction. The result is a
system of six linear equations

2�vi = �1ui, 2�ui = �2vi, �13a�

2�v j = �1uj, 2�uj = �2v j , �13b�

r1 − r3vk = �1uk, r2 − r3uk = �2vk. �13c�

The above equations impose two conditions

��1�2 − 4�2�uivi = 0, �14a�

��1�2 − 4�2�ujv j = 0. �14b�

From these equations it can be deduced that the condition
�9� is valid and the system of equations �5� and �7� is solv-
able. Note that as a consequences of Eq. �13� x and/or y
components of vectors u and v vanish simultaneously.
Hence, conditions �14� are satisfied in the following three
cases:

�i� vectors u and v lie in the xz plane,

�1�2 − 4�2 = 0, ujv j = 0; �15�

�ii� vectors u and v lie in the yz plane,

�1�2 − 4�2 = 0, uivi = 0; �16�

�iii� vectors u and v are aligned with axis z,

uivi = ujv j = 0. �17�

These cases are examined individually in the next section.

IV. EXPLICIT EXPRESSIONS

In this section we analyze all three cases and derive ex-
plicit expressions for entanglement eigenvalue. Each expres-
sion has its own range of definition in which they are deemed
applicable. Three ranges of definition cover the four-
dimensional sphere given by the normalization condition. It
is necessary to separate the validity domains and to make
clear which of the expressions should be applied for a given

state. It turns out that the separation of domains requires
solving inequalities that contain polynomials of degree 6.
This is a nontrivial task and we investigate it in the next
section.

A. Circumradius of convex quadrangle

Let us consider the first case. Our main task is to find
Lagrange multipliers �1 and �2. From Eqs. �13c� and �15� we
have

uk =
�2r1 − r2r3

4�2 − r3
2 , vk =

�1r2 − r1r3

4�2 − r3
2 . �18�

In its turn Eq. �13a� gives

�1ui
2 = �2vi

2. �19�

Equation �7� allows the substitution of expressions �18�
into Eq. �19�. Then we can obtain the second equation for
Lagrange multipliers

�1�4�2 + r2
2 − r3

2� = �2�4�2 + r1
2 − r3

2� . �20�

This equation has a simple form owing to condition �9�.
Thus we can factorize the equation of degree 6 into the qua-
dratic equations. Equations �20� and �15� together yield

�1 = 2�
bc + ad

ac + bd
, �2 = 2�

ac + bd

bc + ad
. �21�

Note that we kept only positive values of Lagrange mul-
tipliers and omitted negative values to get the maximal value
of �max

2 . Now Eq. �3� takes the form

4�max
2 = 1 +

8�ab + cd��ac + bd��ad + bc� − r1r2r3

4�2 − r3
2 .

�22�

In fact, entanglement eigenvalue is the sum of two equal
terms and this statement follows from the identity

1 −
r1r2r3

4�2 − r3
2 = 8

�ab + cd��ac + bd��ad + bc�
4�2 − r3

2 . �23�

To derive this identity one must use the normalization con-
dition a2+b2+c2+d2=1. The identity allows us to rewrite
Eq. �22� as follows:

�max
2 = 4Rq

2, �24�

where

Rq
2 =

�ab + cd��ac + bd��ad + bc�
4�2 − r3

2 . �25�

The above formula has a geometric interpretation and
now we demonstrate it. Let us define a quantity p	�a+b
+c+d� /2. Then the denominator can be rewritten as

4�2 − r3
2 = 16�p − a��p − b��p − c��p − d� . �26�

Five independent parameters are necessary to construct a
convex quadrangle. However, four independent parameters
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are necessary to construct a convex quadrangle that has cir-
cumradius. For such quadrangles the area Sq is given exactly
by Eq. �26� up to numerical factor, that is Sq

2= �p−a��p
−b��p−c��p−d�. Hence Eq. �25� can be rewritten as

Rq
2 =

�ab + cd��ac + bd��ad + bc�
16Sq

2 . �27�

Thus Rq can be interpreted as a circumradius of the convex
quadrangle. Equation �27� is the generalization of the corre-
sponding formula of Ref. �25� and reduces to the circumra-
dius of the triangle if one of the parameters is zero.

Equation �24� is valid if vectors u and v are unit and have
nonvanishing x components. These conditions have short for-
mulations

�uk� � 1, �vk� � 1. �28�

The above inequalities are polynomials of degree 6 and
algebraic solutions are unlikely. However, it is still possible
do define the domain of validity of Eq. �27�.

B. Circumradius of crossed quadrangle

Here, we consider the second case given by Eq. �16�.
Derivations repeat steps of the preceding section and the
only difference is the interchange �↔�. Therefore, we skip
some obvious steps and present only the main results. Com-
ponents of vectors u and v along axis z are

uk =
�2r1 − r2r3

4�2 − r3
2 , vk =

�1r2 − r1r3

4�2 − r3
2 . �29�

The second equation for Lagrange multipliers

�1�4�2 + r2
2 − r3

2� = �2�4�2 + r1
2 − r3

2� �30�

together with Eq. �16� yields

�1 = 	 2�
bc − ad

ac − bd
, �2 = 	 2�

ac − bd

bc − ad
. �31�

Using these expressions, one can derive the following ex-
pression for entanglement eigenvalue:

4�max
2 = 1 +

�2�4�2 + r1
2 − r3

2� − r1r2r3

4�2 − r3
2 . �32�

Now the restrictions 1 /4
�max
2 �1 derived in Ref. �24�

uniquely define the signs in Eq. �31�. Right signs enforce
strictly positive fraction on the right-hand side �rhs� of Eq.
�32�. To make a right choice, we replace d by −d in the
identity �23� and rewrite Eq. �32� as follows:

4�max
2 =

1

2

�ac − bd��bc − ad��ab − cd�
p�p − c − d��p − b − d��p − a − d�

	
1

2

�ac − bd��bc − ad��ab − cd�
p�p − c − d��p − b − d��p − a − d�

. �33�

Lower sign yields zero and is wrong. It shows that re-
duced density matrix �AB still has zero eigenvalue.

Upper sign may yield a true answer. Entanglement eigen-
value is

�max
2 = 4R�

2 , �34�

where

R�
2 =

�ac − bd��bc − ad��ab − cd�
16S�

2 , �35�

and S�
2 = p�p−c−d��p−b−d��p−a−d�. The formula �35�

may seem suspicious because it is not clear whether the
right-hand side is positive and lies in the required region. To
clarify the situation we present a geometrical treatment of
Eq. �35�.

The geometrical figure ABCD in Fig. 1�a� is not a quad-
rangle and is not a polygon at all. The reason is that it has
crossed sides AD and BC. We call figure ABCD crossed-
quadrangle in a figurative sense as it has four sides and a
cross point. Another justification of this term is that we will
compare ABCD in Fig. 1�a� with a convex quadrangle ABCD
containing the same sides.

Consider a crossed-quadrangle ABCD with sides AB=a,
BC=b, CD=c, DA=d that has circumcircle. It is easy to find
the length of the interval AC,

AC2 =
�ac − bd��bc − ad�

ab − cd
. �36�

This relation is true unless triangles ABC and ADC have
the same height and as a consequence equal areas. Note that
S� is not an area of the crossed quadrangle. It is the differ-
ence between the areas of the noted triangles.

Using Eq. �36�, one can derive exactly Eq. �35� for the
circumradius of the crossed quadrangle. Equation �34� is
meaningful if vectors u and v are unit and have nonzero
components along the axis y.

C. Largest coefficient

In this section we consider the last case described by Eq.
�17�. Entanglement eigenvalue takes the maximal value if all
terms on the rhs of Eq. �3� are positive. Then Eqs. �17� and
�10� together impose

u = sgn�r1�k, v = sgn�r2�k, r1r2r3 
 0, �37�

where sgn�x� gives −1, 0, or 1 depending on whether x is
negative, zero, or positive. Substituting these values into Eq.
�3�, we obtain

�max
2 = 1

4 �1 + �r1� + �r2� + �r3�� . �38�

FIG. 1. This figure shows the example for the case when crossed
quadrangle �a� has larger circumradius than that of convex quad-
rangle �b� with the same sides.
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Owing to inequality, r1r2r3
0, the above expression al-
ways gives a square of the largest coefficient l,

l = max�a,b,c,d� �39�

in Eq. �8�. Indeed, let us consider the case r1�0,r2�0,r3

0. From inequalities r1�0,r2�0 it follows that c2�d2

+ �a2−b2� and therefore c2�d2. Note, c2�d2 is necessary but
not sufficient condition. Now if d�b, then r1�0 yields c
�a and if d
b, then r3
0 yields c�a. Thus inequality c
�a is true in all cases. Similarly c�b and c is the largest
coefficient. On the other hand, �max

2 =c2 and Eq. �38� really
gives the largest coefficient in this case.

Similarly, cases r1�0,r2
0,r3�0 and r1
0,r2�0,r3
�0 yield �max

2 =b2 and �max
2 =a2, respectively. And again the

entanglement eigenvalue takes the value of the largest coef-
ficient.

The last possibility r1
0,r2
0,r3
0 can be analyzed
using analogous speculations. One obtains �max

2 =d2 and d is
the largest coefficient.

Combining all cases mentioned earlier, we rewrite Eq.
�38� as follows:

�max
2 = l2. �40�

This expression is valid if both vectors u and v are col-
linear with the axes z.

We have derived three expressions for �24�, �34�, and �40�
for entanglement eigenvalue. They are valid when vectors u
and v lie in xz plane, lie in yz plane and are collinear with
axis z, respectively. The following section goes on to specify
these domains by parameters a ,b ,c ,d.

V. APPLICABLE DOMAINS

Mainly, two points are being analyzed. First, we probe
into the meaningful geometrical interpretations of quantities
Rq and R�. Second, we separate validity domains of Eqs.
�24�, �34�, and �40�. It is mentioned earlier that algebraic
methods for solving the inequalities of degree 6 are ineffec-
tive. Hence, we use geometric tools that are elegant and con-
cise in this case.

We consider four parameters a ,b ,c ,d as free parameters
as the normalization condition is irrelevant here. Indeed, one
can use the state ��� /
a2+b2+c2+d2 where all parameters
are free. If one repeats the same steps, the only difference is
that the entanglement eigenvalue �max

2 is replaced by
�max

2 / �a2+b2+c2+d2�. In other words, normalization condi-
tion rescales the quadrangle, convex or crossed, so that the
circumradius always lies in the required region. Conse-
quently, in constructing quadrangles we can neglect the nor-
malization condition and consider four free parameters
a ,b ,c ,d.

A. Existence of circumcircle

It is known that four sides a ,b ,c ,d of the convex quad-
rangle must obey the inequality p− l�0. Any set of such
parameters forms a cyclic quadrilateral. Note that the quad-
rangle is not unique as the sides can be arranged in different

orders. But all these quadrangles have the same circumcircle
and the circumradius is unique.

The sides of a crossed quadrangle must obey the same
condition. Indeed, from Fig. 1�a� it follows that BC−AB

AC
AD+DC and DC−AD
AC
AB+BC. Therefore,
AB+AD+DC�BC and AB+BC+AD�DC. The sides BC
and DC are two largest sides and consequently p− l�0.
However, the existence of the circumcircle requires an addi-
tional condition and it is explained here. The relation r3
=2� cos ABC forces 4�2r3

2 and, therefore

S�
2  0. �41�

Thus, the denominator in Eq. �35� must be positive. On the
other hand, the inequality AC20 forces a positive numera-
tor of the same fraction

�ac − bd��bc − ad��ab − cd�  0. �42�

These two inequalities impose conditions on parameters
a ,b ,c ,d. For the future considerations, we need to write ex-
plicitly the condition imposed by inequality �42�. The nu-
merator is a symmetric function on parameters a ,b ,c ,d and
it suffices to analyze only the case abcd. Obviously
�ac−bd�0,�ab−cd�0 and it remains the constraint bc
ad. The last inequality states that the product of the largest
and smallest coefficients must not exceed the product of the
remaining coefficients. Denote by s the smallest coefficient

s = min�a,b,c,d� . �43�

We can summarize all cases as follows:

l2s2 � abcd . �44�

This is a necessary but not sufficient condition for the
existence of R�. The next condition, S�

2 �0, we do not ana-
lyze because the first condition �44� suffices to separate the
validity domains.

B. Separation of validity domains

In this section we define applicable domains of expres-
sions �24�, �34�, and �40� step by step.

(a) Circumradius of convex quadrangle. First we separate
the validity domains between the convex quadrangle and the
largest coefficient. In a highly entangled region, where the
center of the circumcircle lies inside the quadrangle, the cir-
cumradius is greater than any of the sides and yield a correct
answer. This situation is changed when the center lies on the
largest side of the quadrangle and both equations �24� and
�40� give equal answers. Suppose that the side a is the largest
one and the center lies on the side a. A little geometrical
speculation yields

a2 = b2 + c2 + d2 + 2
bcd

a
. �45�

From this equation we deduce that if a2 is smaller than
rhs, i.e.,
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a2 � b2 + c2 + d2 + 2
bcd

a
, �46�

then the circumradius formula is valid. If a2 is greater than
rhs in Eq. �45�, then the largest coefficient formula is valid.
The inequality �46� also guarantees the existence of the cy-
clic quadrilateral. Indeed, using the inequality

bc + cd + bd  3
bcd

a
, �47�

one derives

�b + c + d�2  b2 + c2 + d2 +
6bcd

a
 a2. �48�

The above inequality ensures the existence of a convex quad-
rangle with the given sides.

To get a confidence, we can solve equation uk= 	1 using
the relation �45�. However, it is more transparent to factorize
it as follows:

�4�2 − r3
2��1 + uk� =

2ad

bc + ad
�b2 + c2 + d2 +

2bcd

a
− a2�

��a2 + b2 + c2 +
2abc

d
− d2� , �49a�

�4�2 − r3
2��1 − uk� =

2bc

bc + ad
�a2 + c2 + d2 +

2acd

b
− b2�

��a2 + b2 + d2 +
2abd

c
− c2� . �49b�

Similarly, we have

�4�2 − r3
2��1 + vk� =

2bd

ac + bd
�a2 + c2 + d2 +

2acd

b
− b2�

��a2 + b2 + c2 +
2abc

d
− d2� , �50a�

�4�2 − r3
2��1 − vk� =

2ac

ac + bd
�b2 + c2 + d2 +

2bcd

a
− a2�

��a2 + b2 + d2 +
2abd

c
− c2� . �50b�

Thus, the circumradius of the convex quadrangle gives a
correct answer if all parentheses in the above equations are
positive. In general, Eq. �24� is valid if

l2 �
1

2
+

abcd

l2 . �51�

When one of the parameters vanishes, i.e., abcd=0, in-
equality �51� coincides with the corresponding condition in
Ref. �25�.

(b) Circumradius of crossed quadrangle. Next we sepa-
rate the validity domains between the convex and the crossed
quadrangles. If S�

2 
0, then the crossed one has no circum-
circle and the only choice is the circumradius of the convex

quadrangle. If S�
2 �0, then we use the equality

4Rq
2 − 4R�

2 =
r

2

abcd

Sq
2S�

2 , �52�

where r=r1r2r3. It shows that r�0 yields Rq�R� and vice
versa. Entanglement eigenvalue always takes the maximal
value. Therefore, �max

2 =4Rq
2 if r�0 and �max

2 =4R�
2 if r
0.

Thus, r=0 is the separating surface and it is necessary to
analyze the condition r
0.

Suppose abcd. Then r2 and r3 are positive. There-
fore, r is negative if and only if r1 is negative, which implies

a2 + d2 � b2 + c2. �53�

Now suppose adbc. Then r1 is negative and r3 is
positive. Therefore, r2 must be positive, which implies

a2 + c2 � b2 + d2. �54�

It is easy to see that in both cases the left-hand sides
contain the largest and smallest coefficients. This result can
be generalized as follows: r�0, if and only if,

l2 
1
2 − s2. �55�

It remains to separate the validity domains between the
crossed quadrangle and the largest coefficient. We can use
three equivalent ways to make this separation:

�1� to use the geometric picture and to see when 4R�
2 and

l2 coincide;
�2� directly factorize equation uk= 	1;
�3� change the sign of the parameter d.
All of these give the same result stating that Eq. �34� is

valid if

l2 �
1

2
−

abcd

l2 . �56�

Inequalities �55� and �56� together yield

l2s2  abcd . �57�

This inequality is contradicted by �44� unless l2s2=abcd.
Special cases like l2s2=abcd are considered in the next sec-
tion. Now we would like to comment on the fact that crossed
quadrangle survives only in exceptional cases. Actually
crossed case can be obtained from the convex cases by
changing the sign of any parameter. It crucially depends on
signs of parameters or, in general, on phases of parameters.
On the other hand, all phases in Eq. �8� can be eliminated by
LU transformations. For example, the phase of d can be
eliminated by redefinition of the phase of the state function
��� and the phases of remaining parameters can be absorbed
in the definitions of basis vectors �1� of the qubits A, B, and
C. Owing to this entanglement eigenvalue being LU invari-
ant quantity does not depend on phases. However, crossed
case is relevant if one considers states given by generalized
Schmidt decomposition �GSD� �10�. In this case phases can-
not be gauged away and the crossed case has its own range
of definition. This range has shrunk to the separating surface
r=0 in our case.

Now we are ready to present a distinct separation of the
validity domains
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�max
2 = 4Rq

2 if l2 � 1/2 + abcd/l2,

l2 if l2  1/2 + abcd/l2.
� �58�

As an illustration we present the plot of d dependence of
�max

2 in Fig. 2 when a=b=c.
We have distinguished three types of quantum states de-

pending on which expression takes entanglement eigenvalue.
Also there are states that lie on surfaces separating different
applicable domains. They are shared by two types of quan-
tum states and may have interesting features. We will call
those shared states. Such shared states are considered in the
next section.

VI. SHARED STATES

Consider quantum states for which both convex and
crossed quadrangles yield the same entanglement eigenvalue.
Equation �36� is not applicable and we rewrite Eqs. �27� and
�35� as follows:

4Rq
2 =

1

2
�1 −

r

16Sq
2�, 4R�

2 =
1

2
�1 −

r

16S�
2 � . �59�

These equations show that if the state lies on the separat-
ing surface r=0, then the entanglement eigenvalue is a con-
stant

�max
2 = 1

2 �60�

and does not depend on the state parameters. This fact has a
simple interpretation. Consider the case r1=0. Then b2+c2

=a2+d2=1 /2 and the quadrangle consists of two right tri-
angles. These two triangles have a common hypotenuse and
legs b ,c and a ,d, respectively, regardless of the triangles
being in the same semicircle or in opposite semicircles. In
both cases they yield the same circumradius. Decisive factor
is that the center of the circumcircle lies on the diagonal.

Thus, the perimeter and diagonals of the quadrangle divide
ranges of definition of the convex quadrangle. When the cen-
ter of the circumcircle passes the perimeter, the entanglement
eigenvalue changes over from convex circumradius to the
largest coefficient. If the center lies on the diagonal, convex
and crossed circumradiuses become equal.

We would like to bring plausible arguments that this pic-
ture is incomplete and there is a region that has been shrunk
to the point. Consider a three-qubit state given by GSD,

��� = a�100� + b�010� + b�001� + d�111� + e�000� . �61�

One of the parameters must have nonvanishing phase �10�
and we can treat this phase as an angle. Then, we have five
sides and an angle. This set defines a sexangle that has cir-
cumcircle. One can guess that in a highly entangled region
entanglement eigenvalue is the circumradius of the sexangle.
However, there is a crucial difference. Any convex sexangle
contains a star-type area and the sides of this area are the
diagonals of the sexangle. The perimeter of the star separates
the convex and the crossed cases. Unfortunately, we cannot
see this picture in our case because the diagonals of a quad-
rangle confine a single point. It is left for the future to cal-
culate the entanglement eigenvalues for arbitrary three-qubit
states and justify this general picture.

Shared states given by r=0 acquire new properties. They
can be used for perfect teleportation and superdense coding
�25,27,28�. This statement is not proven clearly, but also no
exceptions are known.

Now consider a case where the largest coefficient and
circumradius of the convex quadrangle coincide with each
other. The separating surface is given by

l2 =
1

2
+

abcd

l2 . �62�

Entanglement eigenvalue ranges within the narrow inter-
val

1
2 � �max

2 �
4
7 . �63�

It separates slightly and highly entangled states. When
one of the coefficients is large enough and satisfies the rela-
tion l2�1 /2+abcd / l2, the entanglement eigenvalue takes a
larger coefficient. And the expression �8� for the state func-
tion effectively takes the place of the Schmidt decomposi-
tion. In the highly entangled region no similar picture exists
and all coefficients participate in equal parts and yield the
circumradius. Thus, shared states given by Eq. �62� separate
slightly entangled states from highly entangled ones, and can
be ascribed to both types.

What is the meaning of these states? Shared states given
by r=0 acquire new and important features. One can expect
that shared states dividing highly and slightly entangled
states also must acquire some new features. However, these
features are yet to be discovered.

VII. CONCLUSIONS

We have considered three-parametric families of three-
qubit states and derived explicit expressions for entangle-

FIG. 2. Plot of d dependence of �max
2 when a=b=c. When d

→1, �max
2 goes to 1 as expected. When d=0, �max

2 becomes 4 /9,
which coincides with the result of Ref. �7�. When r=0 which im-
plies a=d=1 /2, �max

2 becomes 1 /2 �it is shown as dotted line�.
When d=2a, which implies d=
4 /7, �max

2 goes to 4 /7, which is
one of the shared states �it is also shown as another dotted line�.
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ment eigenvalue. The final expressions have their own geo-
metrical interpretation. The result in this paper with the
results of Ref. �25� show that the geometric measure has two
visiting cards: The circumradius and the largest coefficient.
The geometric interpretation may enable us to predict the
answer for the states given by GSD. If the center of the
circumcircle lies in the star-type area confined by diagonals
of the sexangle, then the entanglement eigenvalue is the cir-
cumradius of the crossed sexangle�s�. If the center lies in the
remaining part of the sexangle, the entanglement eigenvalue
is the circumradius of the convex sexangle. And when the
center passes the perimeter, then entanglement eigenvalue is
the largest coefficient. Although we cannot justify our pre-
diction due to lack of computational technique, this picture
surely enables us to take a step toward a deeper understand-
ing of the entanglement measure �29�.

Shared states given by r=0 play an important role in
quantum-information theory. The application of shared states
given by Eq. �62� is somewhat questionable, and should be
analyzed further. It should be pointed out that one must un-
derstand the properties of these states and find the possible

applications. We would like to investigate this issue else-
where.

Finally following our procedure, one can obtain the near-
est product state of a given three-parametric W-type state.
These two states will always be separated by a line of den-
sities composed of the convex combination of W-type states
and the nearest product states �30�. There is a separable den-
sity matrix �0 which splits the line into two parts as follows.
One part consists of separable densities and another part con-
sists of nonseparable densities. It was shown in Ref. �30� that
an operator W=�0−�ABC−tr��0��0−�ABC��I has the proper-
ties tr�W�ABC�
0, and tr�W��0 for the arbitrary separable
state �. The operator W is clearly Hermitian and thus is an
entanglement witness for the state. Thus our results allow
oneself to construct the entanglement witnesses for W-type
three-qubit states. However, the explicit derivation of �0
seems to be highly nontrivial �31,32�.
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