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Which state loses less quantum information between Greenberger-Horne-Zeilinger �GHZ� and W states
when they are prepared for two-party quantum teleportation through a noisy channel? We address this issue by
solving analytically a master equation in the Lindblad form with introducing the noisy channels that cause the
quantum channels to be mixed states. It is found that the answer to this question is dependent on the type of
noisy channel. If, for example, the noisy channel is �L2,x ,L3,x ,L4,x� type, where the L’s denote the Lindblad
operators, the GHZ state is always more robust than the W state, i.e., the GHZ state preserves more quantum
information. In, however, the �L2,y ,L3,y ,L4,y�-type channel the situation becomes completely reversed. In the
�L2,z ,L3,z ,L4,z�-type channel, the W state is more robust than the GHZ state when the noisy parameter ��� is
comparatively small while the GHZ state becomes more robust when � is large. In isotropic noisy channel we
found that both states preserve an equal amount of quantum information. A relation between the average
fidelity and entanglement for the mixed state quantum channels are discussed.
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I. INTRODUCTION

Quantum teleportation is an important process in
quantum-information theories �1�. This process enables us to
transmit an unknown quantum state from a sender, called
Alice, to a remote recipient, called Bob, via dual classical
channels. Bennett et al. have shown this process first in Ref.
�2�. In that paper the authors used an Einstein-Podolsky-
Rosen �EPR� state

�EPR� =
1
�2

��00� + �11�� �1.1�

as a quantum channel between Alice and Bob. In fact, �EPR�
is not the only two-qubit state which allows a perfect quan-
tum teleportation. Any states that are local-unitary �LU�
equivalent with �EPR� also can be used as quantum channels
for the perfect teleportation. This set of states forms a set of
maximally entangled states.

Subsequently, quantum teleportation using three-qubit
quantum channels are discussed. In the three-qubit system it
is well known that there are two LU-inequivalent types of
the maximally entangled states, called the Greenberger-
Horne-Zeilinger �GHZ� �3� and the W �4� states whose gen-
eral expressions are

�GHZ� = a�000� + b�111�, ��a�2 + �b�2 = 1� ,

�W� = a�001� + b�010� + c�100�, ��a�2 + �b�2 + �c�2 = 1� .

�1.2�

The perfect two-party quantum teleportation with exact GHZ
state1 was discussed in Ref. �5�. Furthermore, the authors of
Ref. �5� discussed three-party teleportation �Alice, Bob,
Cliff� with the GHZ state. This can be used as an imperfect
quantum cloning machine �6�.

Recently, it was shown �7� that not only GHZ state

��GHZ� =
1
�2

��000� + �111�� �1.3�

but also W state

��W� =
1

2
��100� + �010� + �2�001�� �1.4�

can be used as quantum channels for the perfect two-party
teleportation. As shown in Ref. �8� both ��GHZ� and ��W�
have G���=1 /�2, where G��� is a Groverian entanglement
measure �9�. Motivated from the fact that ��GHZ� and ��W�
have the same Groverian entanglement measure, the authors
of Ref. �10� have shown that the state

��̃� =
1
�2

��00q1� + �11q2�� , �1.5�

where �q1� and �q2� are arbitrary normalized one-qubit states,
has also G���=1 /�2 and it can be used as a perfect two-
party teleportation.

1Exact GHZ state is �GHZ� in Eq.�1.2� with a=b=1 /�2.
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The fact that both ��GHZ� and ��W� allow the perfect two-
party teleportation naturally arises the following question:
Which state is better if noisy channels are introduced in the
process of teleportation? The purpose of this paper is to ad-
dress this issue by solving analytically a master equation in
the Lindblad form �11�

��

�t
= − i�HS,�� + �

i,�
	Li,��Li,�

† −
1

2

Li,�

† Li,�,��� , �1.6�

where the Lindblad operator Li,���i,���
�i� acts on the ith

qubit and describes decoherence, where ��
�i� denotes the Pauli

matrix of the ith qubit with �=x ,y ,z. The constant �i,� is
approximately equal to the inverse of decoherence time. The
master equation approach is shown to be equivalent to the
usual quantum operation approach for the description of
open quantum systems �1�.

To reduce the effect of the noisy channels in the telepor-
tation process the special purification protocols have been
developed in Refs. �12,13�. Via this purification process for
the noisy quantum channel one can increase the fidelity of
teleportation. One can also directly compute the fidelity be-
tween initial unknown state and final state. This was dis-
cussed in Ref. �14� when the two-qubit EPR quantum chan-
nel interacts with various noisy channels. The quantum
circuit for teleportation with �EPR� through a noisy channel
is illustrated in Fig. 1. The two top lines belong to Alice,
while the bottom one belongs to Bob. The dotted box de-
notes noisy channel. Although different noisy channels were
discussed in Ref. �14�, we will concentrate on the noisy
channel which makes the quantum channel to be mixed be-
cause our main purpose is comparison of ��GHZ� with ��W� in
the teleportation process.

How much quantum information is lost due to noisy chan-
nel can be measured by fidelity between ��in� and ��out�. In
order to quantify this quantity it is more convenient to use
the density matrix. Let �in= ��in���in� and �EPR= �EPR��EPR�.
Then the density matrix for the output state reduces to

�out = Tr1,2�UEPR�in � ���EPR�UEPR
† � , �1.7�

where Tr1,2 is partial trace over Alice’s qubits and UEPR is a
unitary operator implemented by quantum circuit in Fig. 1.
In Eq. �1.7� � denotes a quantum operation which maps from
�EPR to ���EPR� due to noisy channel. The explicit expres-
sions for ���EPR� can be derived by solving the master equa-

tion. Then the quantity which measures how much informa-
tion is preserved or lost can be written as

F = ��in��out��in� �1.8�

which is the square of the usual fidelity F�� ,��
=Tr��1/2��1/2. Thus F=1 implies the perfect teleportation. If
1−F becomes larger and larger, this indicates that we lost
quantum information more and more.

The paper is organized as follows. In Sec. II we consider
the two-party quantum teleportation with ��GHZ� as quantum
channel when noisy channel makes ��GHZ� to be a mixed
state. Solving the master equation �1.6� analytically, we com-
pute F in Eq. �1.8� explicitly when Lindblad operators are
�L2,x ,L3,x ,L4,x�, �L2,y ,L3,y ,L4,y�, �L2,z ,L3,z ,L4,z�, and isotropy,
respectively. In Sec. III the calculation in the preceding sec-
tion is repeated with changing the quantum channel from
��GHZ� to ��W�. In Sec. IV the results of Sec. II and Sec. III
are compared with each other. It is shown that the answer of
the question “which state is more robust2 in the noisy chan-
nel?” is completely dependent on the type of the noisy chan-
nel. In the �L2,x ,L3,x ,L4,x�, for example, ��GHZ� preserves
more information than ��W�, while the reverse situation oc-
curs in the �L2,y ,L3,y ,L4,y� channel. The situation in the
�L2,z ,L3,z ,L4,z� channel is more delicate. When the multipli-
cation of a noisy parameter with time parameter, i.e., �i,zt, is
small, ��W� is slightly more robust than ��GHZ�. If, however,
�i,zt becomes larger, ��GHZ� preserves more information than
��W�. In isotropy noisy with �i,x=�i,y =�i,z=� the average of
F over all input states ��in� becomes identical for ��GHZ� and
��W�. In Sec. IV we give a brief conclusion. Also we discuss
in this section a relation between average fidelity and en-
tanglement for the mixed state quantum channels.

II. GHZ STATE WITH NOISY CHANNELS

In this section we would like to explore the effect of the
noisy channels when the teleportation is performed with
��GHZ�. It is convenient to write the unknown state ��in� to be
teleported as a Bloch vector on a Bloch sphere in a form

��in� = cos	�

2
�ei�/2�0� + sin	�

2
�e−i�/2�1� , �2.1�

where � and � are the polar and azimuthal angles.
The quantum circuit for teleportation with ��GHZ� is

shown in Fig. 2. The three top lines belong to Alice, while
the bottom one belongs to Bob. The dotted box denotes noisy
channel. Comparing Fig. 2 to Fig. 1 there appears one more
controlled-NOT �CNOT� gate between the unknown state and
GHZ state.

The density for the output state can be computed by

�out = Tr1,2,3�UGHZ�in � ���GHZ�UGHZ
† � , �2.2�

where Tr1,2,3 is partial trace over Alice’s qubits and UGHZ is
a unitary operator, which can be read from Fig. 2. In Eq.
�2.2� �in= ��in���in� and �GHZ= ��GHZ���GHZ�.

2Throughout this paper “a given state is more robust” means that
the state does lose less quantum information in the quantum tele-
portation through noise channels.
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FIG. 1. A quantum circuit for quantum teleportation through
noisy channels with the EPR state. The top two lines belong to
Alice while the bottom line belongs to Bob. The dotted box repre-
sents noisy channels, which causes the quantum channel to be a
mixed state.
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Now, we consider �L2,z ,L3,z ,L4,z� noise channel because it
is most simple to solve the master equation �1.6�. Setting
�ij =�ij��GHZ� with i , j=0, . . . ,7 and assuming HS=0 and
�2,z=�3,z=�4,z=�, the master equation reduces to eight diag-
onal and 28 off-diagonal first-order differential equations.
Most of them simply give trivial solution and the only non-
vanishing components are �00=�77=1 /2 and �07=�70
=e−6�t /2. Thus, in this noisy channel ���GHZ� becomes

���GHZ� =
1

2
��000��000� + �111��111��

+
1

2
e−6�t��000��111� + �111��000�� . �2.3�

Inserting Eq. �2.3� into Eq. �2.2� it is straightforward to de-
rive �out. Then the quantity F defined in Eq. �1.8� is depen-
dent on input angle � as follows:

F��,�� = 1 −
1

2
�1 − e−6�t�sin2 � . �2.4�

The average F�� ,�� over all possible input unknown states
defined as

F̄ 
1

4	
�

0

2	

d��
0

	

d� sin �F��,�� �2.5�

reduces to

F̄ =
2

3
+

1

3
e−6�t. �2.6�

It is easy to check that F�� ,��= F̄=1 when there is no noisy
channel, i.e., �=0, which implies the perfect teleportation.

Next, we consider �L2,x ,L3,x ,L4,x� noisy channel. Setting
again �ij =�ij��GHZ� and assuming again HS=0 and �2,x
=�3,x=�4,x=�, one can show that the master equation �1.6�
reduces to eight diagonal coupled linear differential equa-
tions and 28 off-diagonal coupled linear differential equa-
tions. The eight diagonal equations imply �i=0

3 �ii=�i=4
7 �ii

=1 /2. Thus we can write �00=1 /2+
q0, �11=
q1, �22
=
q2, �33=−
q0−
q1−
q2, �44=
q4, �55=
q5, �66=
q6,
and �77=1 /2− �
q4+
q5+
q6� with 
qi�t=0�=0 for all i. In-

serting these expressions into the original coupled equations,
one can easily derive the diagonal components of �, which
are

�00 = �77 =
1

8
�1 + 3e−4�t� ,

�11 = ¯ = �66 =
1

8
�1 − e−4�t� . �2.7�

The off-diagonal 28 coupled equations consist of seven
groups, each of which are four coupled differential equations
in the closed form. Thus, we can solve all of them by similar
way. Most of them give the trivial solutions and the nonva-
nishing components are

�07 =
1

8
�1 + 3e−4�t� ,

�16 = �25 = �34 =
1

8
�1 − e−4�t� �2.8�

with �ij =� ji. Defining

�+  1 + 3e−4�t,

�−  1 − e−4�t, �2.9�

we can express ���GHZ� analytically in a form

���GHZ� =
1

8�
�+ 0 0 0 0 0 0 �+

0 �− 0 0 0 0 �− 0

0 0 �− 0 0 �− 0 0

0 0 0 �− �− 0 0 0

0 0 0 �− �− 0 0 0

0 0 �− 0 0 �− 0 0

0 �− 0 0 0 0 �− 0

�+ 0 0 0 0 0 0 �+

� .

�2.10�
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FIG. 3. A quantum circuit for quantum teleportation through
noisy channels with the W state. The top three lines belong to Alice
while the bottom line belongs to Bob. The dotted box represents
noisy channels, which causes the quantum channel to be a mixed

state. The unitary operator Ũ makes ��̃W� coincide with ��̃GHZ� ex-
pressed in Fig. 2.
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FIG. 2. A quantum circuit for quantum teleportation through
noisy channels with the GHZ state. The top three lines belong to
Alice while the bottom line belongs to Bob. The dotted box repre-
sents noisy channels, which causes the quantum channel to be a
mixed state.
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Then using Eq. �2.2� one can compute F�� ,�� and F̄, whose
expressions are

F��,�� =
1

2
��1 + sin2 � cos2 ��

+ e−4�t�cos2 � + sin2 � sin2��� ,

F̄ =
2

3
+

1

3
e−4�t. �2.11�

Similar calculation shows that ���GHZ� for �L2,y ,L3,y ,L4,y�
noisy channel becomes

���GHZ� =
1

8�
�+ 0 0 0 0 0 0 �1

0 �− 0 0 0 0 − �2 0

0 0 �− 0 0 − �2 0 0

0 0 0 �− − �2 0 0 0

0 0 0 − �2 �− 0 0 0

0 0 − �2 0 0 �− 0 0

0 − �2 0 0 0 0 �− 0

�1 0 0 0 0 0 0 �+

� , �2.12�

where �� are given in Eq. �2.9� and, �1 and �2 are defined as

�1 = 3e−2�t + e−6�t,

�2 = e−2�t − e−6�t. �2.13�

One may wonder why the off-diagonal components of Eq.
�2.12� is much different from those of Eq. �2.10� because of
the following consideration: If �ij

x and �ij
y are density matri-

ces for �L2x ,L3x ,L4x� and �L2y ,L3y ,L4y� noises, respectively,
then �u � u � u��ij

x �u � u � u�† satisfies the master equation
for the �L2y ,L3y ,L4y� provided that u is a unitary operator
satisfying u�xu

†=�y. Although this is completely correct,
this does not guarantee �ij

y = �u � u � u��ij
x �u � u � u�† be-

cause �ij
x and �ij

y should satisfy the boundary condition, i.e.,
�ij

x =�ij
y =�GHZ when �t=0. The detailed computation for the

off-diagonal components of �ij
x and �ij

y is briefly summarized
in the Appendix.

One can show that Eq. �2.2� generates

F��,�� =
1

2
�1 + sin2 � sin2 �e−2�t

+ cos2 �e−4�t + sin2 � cos2 �e−6�t� ,

F̄ =
1

6
�3 + e−2�t + e−4�t + e−6�t� . �2.14�

For isotropic noise, which is described by nine Lindblad op-
erators, L2,�, L3,�, and L4,� with �=x ,y ,z, ���GHZ� becomes

���GHZ� =
1

8�
�̃+ 0 0 0 0 0 0 

0 �̃− 0 0 0 0 0 0

0 0 �̃− 0 0 0 0 0

0 0 0 �̃− 0 0 0 0

0 0 0 0 �̃− 0 0 0

0 0 0 0 0 �̃− 0 0

0 0 0 0 0 0 �̃− 0

 0 0 0 0 0 0 �̃+

� ,

�2.15�

where

�̃+ = 1 + 3e−8�t,

�̃− = 1 − e−8�t,

 = 4e−12�t. �2.16�

In this case F�� ,�� and F̄ becomes

F��,�� =
1

2
�1 + e−8�t cos2 � + e−12�t sin2 �� ,

F̄ =
1

6
�3 + e−8�t + 2e−12�t� . �2.17�

It is interesting to note that F�� ,�� for the isotropic noisy
channel is dependent on angle parameter �, while the same
quantity is independent of � in Ref. �14�, where the two-

qubit EPR state was used. The final results of F�� ,�� and F̄
are summarized in Table I and will be compared to those
derived from ��W�. In the next section we will discuss the
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effect of noisy channels when we prepare ��W� for the quan-
tum teleportation.

III. W STATE WITH NOISY CHANNELS

In this section we would like to repeat calculation of the
preceding section when ��GHZ� is replaced by ��W�. In order
to compute F�� ,�� we need a quantum circuit, which should
be, of course, different from Fig. 2. The quantum circuit for
the quantum teleportation with ��W� described in Fig. 3 is not
simple like the GHZ state. It cannot be represented by the
usual controlled-NOT �CNOT� and Hardmard gates. In fact, we

do not know how to express the Ũ gate described in Fig. 3 as
a combination of the usual well-known gates such as CNOT,

Hardmard, Pauli X ,Y ,Z, and Toffoli gates. The Ũ gate is

made to make ��̃W� in Fig. 3 equal to ��̃GHZ� in Fig 2. The

explicit expression for the Ũ gate is

Ũ =
1

2�
0 1 1 0 �2 0 0 0

0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 2

�2 0 0 0 0 1 1 0

0 1 1 0 − �2 0 0 0

0 �2 − �2 0 0 0 0 0

0 0 0 0 0 �2 − �2 0

�2 0 0 0 0 − 1 − 1 0

� .

�3.1�

In spite of, therefore, lack of knowledge on Ũ-gate �out, the
density matrix for the output state, can be derived by

�out = Tr1,2,3�UW�in � ���W�UW
† � , �3.2�

where the unitary operator UW can be read easily from Fig. 3
and ���W� is a density matrix constructed by �W��W���W�
and noisy channels described by the dotted box in Fig. 3.

Now we first consider the �L2,z ,L3,z ,L4,z� channel. In this
case the master equation �1.6� with assuming, for simplicity,
�2,z=�3,z=�4,z=� reduces to the simple first-order differen-
tial equations, which gives

���W� =
1

4�
0 0 0 0 0 0 0 0

0 2 �2e−4�t 0 �2e−4�t 0 0 0

0 �2e−4�t 1 0 e−4�t 0 0 0

0 0 0 0 0 0 0 0

0 �2e−4�t e−4�t 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

� .

�3.3�

Then Eq. �3.2� allows us to compute �out directly and Eq.
�1.8� gives

F��,�� = 1 −
1

4
�1 − e−4�t��1 + sin2 �� ,

F̄ =
1

12
�7 + 5e−4�t� . �3.4�

Next we consider the �L2,x ,L3,x ,L4,x� noisy channel with
�2,x=�3,x=�4,x=�. In this case the master equation reduces
to eight diagonal coupled equations and 28 off-diagonal
coupled equations. The diagonal equations imply �i=0

3 �ii
=1 /2+e−2�t /4 and �i=4

7 �ii=1 /2−e−2�t /4, where �ij =�ij��W�
with i , j=0, . . . ,7. Using these two constraints one can com-
pute all diagonal components, which are

�00 =
1

8
�1 + e−2�t − e−4�t − e−6�t� ,

�11 =
1

8
�1 + e−2�t + e−4�t + e−6�t� ,

�22 = �44 =
1

8
�1 + e−6�t� ,

�33 = �55 =
1

8
�1 − e−6�t� ,

�66 =
1

8
�1 − e−2�t + e−4�t − e−6�t� ,

�77 =
1

8
�1 − e−2�t − e−4�t + e−6�t� . �3.5�

The equations for the off-diagonal components are more
complicated. However, these equations consist of seven
groups, each of which are four closed coupled equations.
This fact allows us to compute all components analytically,
whose explicit expressions are

�03 = �05 = �2�06 =
�2

16
�1 + e−2�t − e−4�t − e−6�t� ,

�12 = �14 = �2�24 =
�2

16
�1 + e−2�t + e−4�t + e−6�t� ,

�27 = �47 = �2�17 =
�2

16
�1 − e−2�t − e−4�t + e−6�t� ,

�36 = �56 = �2�35 =
�2

16
�1 − e−2�t + e−4�t − e−6�t� �3.6�

with �ij =� ji. Defining

�1 = 1 + e−2�t + e−4�t + e−6�t,

�2 = 1 + e−2�t − e−4�t − e−6�t,
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�3 = 1 − e−2�t − e−4�t + e−6�t,

�4 = 1 − e−2�t + e−4�t − e−6�t,

�� = 1 � e−6�t, �3.7�

one can express ���W� as follows:

���W� =
1

16�
2�2 0 0 �2�2 0 �2�2 �2 0

0 2�1 �2�1 0 �2�1 0 0 �3

0 �2�1 2�+ 0 �1 0 0 �2�3

�2�2 0 0 2�− 0 �4 �2�4 0

0 �2�1 �1 0 2�+ 0 0 �2�3

�2�2 0 0 �4 0 2�− �2�4 0

�2 0 0 �2�4 0 �2�4 2�4 0

0 �3 �2�3 0 �2�3 0 0 2�3

� . �3.8�

Inserting Eq. �3.8� into �3.2�, one can compute �out directly. Thus using �out and Eq. �1.8�, one can compute F�� ,�� and F̄
whose expressions are

F��,�� =
1

8
��4 + 2 sin2 � cos2 �� + e−2�t�cos2 � + 2 sin2 � cos2�� + e−4�t�2 sin2 � sin2 �� + e−6�t�3 cos2 � + 2 sin2 � sin2 ��� ,

F̄ =
1

24
�14 + 3e−2�t + 2e−4�t + 5e−6�t� . �3.9�

For the �L2,y ,L3,y ,L4,y� noisy channel similar calculation shows that ���W� reduces to

���W� =
1

16�
2�2 0 0 − �2�2 0 − �2�2 − �2 0

0 2�1 �2�1 0 �2�1 0 0 − �3

0 �2�1 2�+ 0 �1 0 0 − �2�3

− �2�2 0 0 2�− 0 �4 �2�4 0

0 �2�1 �1 0 2�+ 0 0 − �2�3

− �2�2 0 0 �4 0 2�− �2�4 0

− �2 0 0 �2�4 0 �2�4 2�4 0

0 − �3 − �2�3 0 − �2�3 0 0 2�3

� �3.10�

and, as a result, F�� ,�� and F̄ reduce to

F��,�� =
1

8
��4 + 2 sin2 � sin2 �� + e−2�t�cos2 � + 2 sin2 � sin2 �� + e−4�t�2 sin2 � cos2 �� + e−6�t�3 cos2 � + 2 sin2 � cos2 ��� ,

F̄ =
1

24
�14 + 3e−2�t + 2e−4�t + 5e−6�t� . �3.11�

It is interesting to note that F̄ for the �L2,x ,L3,x ,L4,x� noisy channel is the same with F̄ for the �L2,y ,L3,y ,L4,y� noisy channel.
Finally for isotropic noisy channel ���W� becomes
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���W� =
1

8�
�̃2 0 0 0 0 0 0 0

0 �̃1
�2̃+ 0 �2̃+ 0 0 0

0 �2̃+ �̃+ 0 ̃+ 0 0 0

0 0 0 �̃− 0 ̃−
�2̃− 0

0 �2̃+ ̃+ 0 �̃+ 0 0 0

0 0 0 ̃− 0 �̃−
�2̃− 0

0 0 0 �2̃− 0 �2̃− �̃4 0

0 0 0 0 0 0 0 �̃3

� , �3.12�

where

�̃1 = 1 + e−4�t + e−8�t + e−12�t,

�̃2 = 1 + e−4�t − e−8�t − e−12�t,

�̃3 = 1 − e−4�t − e−8�t + e−12�t,

�̃4 = 1 − e−4�t + e−8�t − e−12�t,

�̃� = 1 � e−12�t,

̃� = e−8�t � e−12�t. �3.13�

Thus, one can compute F�� ,�� and F̄ for this noisy channel,
which are

F��,�� =
1

4
�2 + e−8�t sin2 � + e−12�t�1 + cos2 ��� ,

F̄ =
1

6
�3 + e−8�t + 2e−12�t� . �3.14�

The measures F�� ,�� and F̄ for the various noisy channels
are summarized in Table I with those for the GHZ state. In

the next section we will compare F�� ,�� and F̄ for the GHZ
state with those for the W state.

IV. GHZ VERSUS W

The quantities F�� ,�� and F̄ for various noisy channels
are summarized in Table I when GHZ and W states are pre-
pared for the quantum teleportation. The most interesting

feature in Table I is the fact that F̄ for GHZ is exactly the
same with that for W in the isotropic channel. Since the
isotropic noisy channel can be regarded roughly as a sum of
�L2,x ,L3,x ,L4,x�, �L2,y ,L3,y ,L4,y�, and �L2,z ,L3,z ,L4,z� noisy
channels, this fact indicates that the robustness of the quan-
tum channel is noise dependent.

In order to show this fact explicitly we plot the �t depen-

dence of F̄ for �L2,x ,L3,x ,L4,x� �Fig. 4�a��, �L2,y ,L3,y ,L4,y�
�Fig. 4�b��, and �L2,z ,L3,z ,L4,z� �Fig. 4�c�� noisy channels.

Figure 4 shows that F̄ for ��GHZ� is always larger than that
for ��W� in the �L2,x ,L3,x ,L4,x� noisy channel. This means that
��GHZ� does lose less quantum information compared to ��W�
in this noisy channel. However, the situation is changed in

the �L2,y ,L3,y ,L4,y� noisy channel. In this case F̄ for ��W� is
always larger than that for ��GHZ�. This means that ��W� is
more robust than ��GHZ� in this noisy channel. In the
�L2,z ,L3,z ,L4,z� noisy channel the situation is more delicate.

TABLE I. Summary of F�� ,�� and F̄ in various noisy channels.

Noise GHZ W

�L2x ,L3x ,L4x�
1
2 ��1+sin2 � cos2 ��+e−4�t�1−sin2 � cos2��� 1

8 ��4+2 sin2 � cos2��+e−2�t�cos2 �+2 sin2 � cos2 ��
+e−4�t�2 sin2 � sin2 ��+e−6�t�3 cos2 �+2 sin2 � sin2 ���

F�� ,�� �L2y ,L3y ,L4y�
1
2 �1+sin2 � sin2 �e−2�t+cos2 �e−4�t+sin2 � cos2 �e−6�t� 1

8 ��4+2 sin2 � sin2 ��+e−2�t�cos2 �+2 sin2 � sin2 ��
+e−4�t�2 sin2 � cos2 ��+e−6�t�3 cos2 �+2 sin2 � cos2 ���

�L2z ,L3z ,L4z� 1− 1
2 �1−e−6�t�sin2 � 1− 1

4 �1−e−4�t��1+sin2 ��
Isotropy 1

2 �1+cos2 �e−8�t+sin2 �e−12�t� 1
4 �2+sin2 �e−8�t+ �1+cos2 ��e−12�t�

�L2x ,L3x ,L4x�
2
3 + 1

3e−4�t 1
24�14+3e−2�t+2e−4�t+5e−6�t�

F̄ �L2y ,L3y ,L4y�
1
6 �3+e−2�t+e−4�t+e−6�t� 1

24�14+3e−2�t+2e−4�t+5e−6�t�

�L2z ,L3z ,L4z�
2
3 + 1

3e−6�t 1
12�7+5e−4�t�

Isotropy 1
6 �3+e−8�t+2e−12�t� 1

6 �3+e−8�t+2e−12�t�
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In this channel F̄ for ��W� is larger than that for ��GHZ� when
�t�0.223. If, however, �t�0.223, F̄ for ��GHZ� becomes
larger than that for ��W�. Summing over all those phenomena

seems to make the same F̄ for ��GHZ� and ��W� in the isotro-
pic channel.

However, we should note that the result of Fig. 4 is de-
pendent on the choice of the basis. To show this explicitly let
us consider a unitary operator U= ��x+�y� /�2, which yields
U�xU

†=�y and U�yU
†=�x. Now, let us consider the noisy

teleportation when quantum channels are ��GHZ� �=U � U
� U��GHZ� and ��W� �=U � U � U��W�, respectively. Then it is
obvious that Figs. 4�a� and 4�b� would be interchanged with
each other if one computes the average fidelity. This indi-
cates that Fig. 4 is dependent on the choice of the basis
states.

Another interesting point in Table I is the fact that F̄ for
the GHZ state decays to 2/3 in �L2,x ,L3,x ,L4,x� and

�L2,z ,L3,z ,L4,z� noisy channels. The number F̄=2 /3 corre-
sponds to the average fidelity obtained only by the classical
communication �15�. However, in the �L2,y ,L3,y ,L4,y� noisy

channel, F̄ for the GHZ state decays to 1/2, which corre-
sponds to no-communication between Alice and Bob. When
quantum channel is subject to noise in one direction, the
average fidelity for the W state always decays to 7/12, which

is slightly smaller than 2/3. In the isotropic noisy channel, F̄
for both GHZ and W states decays to 1/2 when �t→� as
with the two-qubit EPR quantum channel �14�.

Figure 5 is a plot of � and � dependence of F�� ,�� for
�L2,x ,L3,x ,L4,x� �Fig. 5�a��, �L2,y ,L3,y ,L4,y� �Fig. 5�b��,
�L2,z ,L3,z ,L4,z� ��Fig. 5�c��, and isotropic �Fig. 5�d�� noisy
channels when �t is fixed to 0.5. The transparent and opaque
surfaces correspond to GHZ and W states, respectively. Fig-
ure 5�a� indicates that in the �L2,x ,L3,x ,L4,x� noisy channel,
F�� ,�� for the GHZ state is larger than that for the W state in
the entire range of � and �. Figure 5�b� shows that in the
�L2,y ,L3,y ,L4,y� noisy channel, F�� ,�� for the W state is
larger in almost every range of � and � except for the small

boundary region. This is consistent with the fact that F̄ for
the W state is larger than that for the GHZ state in this noisy
channel. Figures 5�c� and 5�d� show that in �L2,z ,L3,z ,L4,z�
and isotropic noisy channels, F�� ,�� for the GHZ state is
generally larger than that for the W state in small � region
�approximately 0���1� and large � region �approximately
2���	� while in the middle � region �approximately 1
���2� F�� ,�� for the W state is larger.

V. CONCLUSION

In this paper we consider the quantum teleportation with
GHZ and W states, respectively, when the noisy channels
cause the quantum channels to be mixed states. The issue of
robustness between GHZ and W, i.e., which state does lose
less quantum information, in the noisy channels is com-
pletely dependent on the type of noisy channel. If, for ex-
ample, the noisy channel is �L2,x ,L3,x ,L4,x� type, the GHZ
state is always robust compared to the W state while the
reverse situation occurs in the �L2,y ,L3,y ,L4,y� noisy channel.
In the �L2,z ,L3,z ,L4,z� noisy channel, the W state does lose
less information than the GHZ state when �t is compara-
tively small. If, however, �t�0.223, the GHZ state becomes
more robust in this noisy channel.

Since the decoherence mechanism in each qubit is obvi-
ously independent, one can explore the different noisy chan-

(b)

(a)

(c)

FIG. 4. �Color online� The plot of �t dependence of F̄ for
�L2,x ,L3,x ,L4,x� �a�, �L2,y ,L3,y ,L4,y� �b�, and �L2,z ,L3,z ,L4,z� �c� noisy

channels. �a� shows that F̄ for the GHZ state is always larger than
that for the W state, which implies that the GHZ state does lose less
quantum information than the W state in the �L2,x ,L3,x ,L4,x� noisy
channel. �b� shows, however, that the situation is completely re-
versed in the �L2,y ,L3,y ,L4,y� noisy channel. In the �L2,z ,L3,z ,L4,z�
noisy channel �c� indicates that the W state is more robust when
�t�0.223 while the GHZ state becomes more robust when �t
�0.223.

JUNG et al. PHYSICAL REVIEW A 78, 012312 �2008�

012312-8



nels for each qubit in the given quantum channel such as the
�L2,x ,L3,y ,L4,z� noisy channel. In this sense the noisy chan-
nels discussed in this paper can be said to be oversimplified.
The reason that we consider only the noisy channels with the
same axis in this paper can be summarized as follows. First,
the main purpose of this paper is to show explicitly that the
robustness between GHZ and W states in the noisy telepor-
tation is dependent on the noisy types. Thus, as shown in Fig.
4 it is sufficient to introduce the same-axis noisy channels.
Another reason is that we would like to explore the cases of
high fidelity because the quantum channels become useless if

F̄ is comparatively small. We conjecture that F̄ with same-

axis noisy channels are in general larger than F̄ with
different-axis noisy channels. For example, let us consider
the teleportation with the EPR state depicted in Fig. 1. When
the quantum channel is subject to �L2,x ,L3,x� or �L2,z ,L3,z�
noisy channels, the average fidelity F̄ is always

F̄1 =
2

3
+

1

3
e−4�t. �5.1�

If, however, the quantum channel is subject to �L2,x ,L3,z� or
�L2,z ,L3,x� noisy channels, direct calculation shows that the
average fidelity reduces to

F̄D =
1

6
�3 + 2e−2�t + e−4�t� , �5.2�

which is smaller than F̄1 in full range of �t. This supports our
conjecture although detailed calculation is needed for the
complete proof.

Probably one may be able to increase F�� ,�� and F̄ sum-
marized in Table I via the purification of noisy channels dis-
cussed in Refs. �12,13�. To explore this issue, of course, we
need another detailed calculation, which is beyond the scope
of the present paper.

It is of interest to extend our paper to examine the fidelity

measures F�� ,�� and F̄ when other types of noisy channels
such as amplitude damping or depolarizing channels are in-
troduced. It is also equally interesting to examine the same
noisy channels in other places such as noisy channels during
Bell’s measurement or the unitary operation.

The most important point we would like to explore in the
future is to understand the physical reason why and how the
robustness of GHZ and W states is dependent on the noisy
types. In our opinion the most nice approach to understand
the physical reason is to investigate the entanglement of the
mixed states ���GHZ� and ���W�. For example, let us consider
the quantum teleportation through the noisy channels with
the EPR state for brevity, which is fully discussed in Ref.
�14�. In this case when the quantum channel is subject to
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FIG. 5. �Color online� The plot of �� , �� dependence of F�� ,�� for �L2,x ,L3,x ,L4,x� �a�, �L2,y ,L3,y ,L4,y� �b�, �L2,z ,L3,z ,L4,z� �c�, and
isotropic �d� noisy channels. The transparent and opaque surfaces correspond to GHZ and W states, respectively. All figures are consistent

with F̄ given in Table I.
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�L2,x ,L3,x�, �L2,y ,L3,y� or �L2,z ,L3,z� noisy channels, the aver-

age fidelity F̄ is always the same with Eq. �5.1�, while the
isotropic noisy channel gives

F̄2 =
1

2
+

1

2
e−8�t. �5.3�

Then we think that an appropriate entanglement measure
should have the following properties. The measure for the
mixed state �1��� generated by �L2,x ,L3,x�, �L2,y ,L3,y�, and
�L2,z ,L3,z� noisy channels should decay to zero at �t→�

because F̄=2 /3 implies that the mixed states do not play any
role as quantum channels. By the same reason the measure
for the mixed state �2��� generated by the isotropic noisy
channel should vanish at �t� �1 /8�ln 3.

If we take a Groverian entanglement measure G��� �9,16�
as an entanglement measure, there is another constraint
G���=1 /�2 at �t=0 because the Groverian measure for the
pure EPR state is 1 /�2. As a result, we can conjecture that
the Groverian measure G1 and G2 for �1��� and �2��� may
exhibit as Fig. 6. We would like to show whether or not our
conjecture is correct. In addition we would like to extend our

conjecture to the quantum teleportation through noisy chan-
nels with GHZ and W states discussed in this paper.

ACKNOWLEDGMENT

This work was supported by the Kyungnam University
Grant, 2008.

APPENDIX

Let, for simplicity, �ij
x and �ij

y be the density matrices for
�L2x ,L3x ,L4x� and �L2y ,L3y ,L4y� noises, respectively. Then
the master equation �1.6� makes the off-diagonal components
of �ij

x and �ij
y satisfy the following coupled equations:

d�07
x

dt
= − ��3�07

x − �16
x − �25

x − �43
x � ,

d�16
x

dt
= − ��3�16

x − �07
x − �34

x − �52
x � ,

d�25
x

dt
= − ��3�25

x − �07
x − �34

x − �61
x � ,

d�34
x

dt
= − ��3�34

x − �16
x − �25

x − �70
x � �A1�

and

d�07
y

dt
= − ��3�07

y + �16
y + �25

y + �43
y � ,

d�16
y

dt
= − ��3�16

y + �07
y + �34

y + �52
y � ,

d�25
y

dt
= − ��3�25

y + �07
y + �34

y + �61
y � ,

d�34
y

dt
= − ��3�34

y + �16
y + �25

y + �70
y � , �A2�

and their complex conjugates. Then it is easy to show that
�07

x =�70
x =�+ /8, �16

x =�61
x =�25

x =�52
x =�34

x =�43
x =�− /8, �07

y

=�70
y =�1 /8, and �16

y =�61
y =�25

y =�52
y =�34

y =�43
y =−�2 /8 sat-

isfy Eq. �A1� and Eq. �A2�. Also these solutions satisfy the
boundary condition �ij

x =�ij
y =�GHZ at �t=0.

If we ignore the boundary condition, many different solu-
tions for �ij

y can be obtained from �ij
x . For example, �07

y =
−�70

y = i�+ and �16
y =−�61

y =�25
y =−�52

y =�43
y =−�34

y =−i�− are
also solutions of Eq. �A2�. These are the solutions derived
from �u � u � u��ij

x �u � u � u�† when

u =
1
�2

	 0 1 − i

1 + i 0
� . �A3�

Even if these are solutions of Eq. �A2�, they do not satisfy
the proper boundary condition.

FIG. 6. �Color online� Conjecture of relation between F̄ and

mixed states Groverian measure. Since F̄2 becomes smaller than 2/3
when �t���=−ln��2−1� /2, the corresponding Groverian measure
G2 is expected to vanish in the same region.
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